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The turbulent free .vection of air above a 2-foot diameter,
heated horizontal plate has been studied experimentally and numerically.
The mean temperature fields and the indraft profiles for two mean plate
temperatures were measured using a thermocouple and a constant tempera-
ture hot-wire anemometer. Also, the turbulence and mean velocity were
measured for the higher plate temperature using the hot-wire method.
.The flow field was visualized by shadow photograph technique. From
visualization and measurements, it was found that the region of signi-
ficant deviation from ambient t .mperature and velocity was restricted
to a region near the plate centerline (the primary flow region). The
indraft velocity was found to be relatively large near the ground level
(within approximately 1" of the ground).

The major temperature drop took place in the region very near the
plate. Within 0.02" of the plate the temperature distribution in the
air could be calculated based on conduction only. This region was .
therefore, called the "conduction layer." At a given mean plate tempera-
ture, the temperature gradient was found to increase with the radius.
Data obtained from heat-transfer measurements were consistent with the
one-third power correlation reported in. the literature.

The turbulence in the flow field was found to consist of low
frequency and high amplitude fluctuations (ou the order of 10 Hz and
I ft/sec). Because of the limitation of the hot-wire technique for
large turbulence measurements, flow velocities could not be deduced
directly from hot-wire data. To remove this difficulty, a numerical
data simulation seheme has been developed in which the parameters
describing the tuibulent flow (r.m.s. fluctuations and correlation
coefficients) were used as input. By inferring from the simulated data
of know parameters, experimental hot-wire data reduction was then
possible. Data reduction model was validated by numerical experiments.

The eddy diffusivity in the region away from the conduction layer
wap estimated based on temperature, velocity and turbulence data using
two independent methods. The agreement was good. The spatial varia-
Lions of the eddy diffusivity in most of the primary flow region was



found to be gradual with rapid drops occurring in the region between
the primary flow and the cold ambient.

A numerical flow calculation was made. The mathematical formula-
tion was baped on Boussinesq approximations using a constant eddy
diffuuivity model. A turbulent Grashof number GrT (the governing
parameter) was defined through the definition of a characteristic plate

temperature rise AT, the plate mean heat flux and the eddy diffusivity.
GrT and A were obtained based on the best fit of experimental and
numerical centerline temperatures.

By the specification of AGT at the plate surface, the effect of
the intense variation of eddy diffusivity in the conduction layer region
could be avoided in the numerical calculations. Numerical results
based on a constant eddy diffusivity model were obtained and compared
with the experimental data. Due apparently to the non-constancy of
the eddy diffusivity, the calculated temperature and velocity profiles
exhibit less constriction than the experimental data. Therefore a more
general turbulent transport model will be required to provide a good
theoretical description of the phenomena.
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I. IMRIODUCIM

The research described in this thesis is an iuvestiption of the

turbulent flow field above a heated circular plate mounted fdush with

a large horizontal surface, hereafter called the ground. The mtivation

for this work was provided by the hypothesis that the heated flat plate

is a proper model for some of the interesting features of large area

fires. The relationship between this model and fire Pralems is

discussed in detail in Appendix A.

The flow field above a heated surface is generated by the upward

motion of the heated air adjacent to the plate. The temperature field

is determined by the interaction between heat transfer from the plate

and ingestion of ambient air. Features of primary interest are the

updraft above the plate, the indraft near the ground, and the tomperature

field. For mathematical simplicity, this problom pay be modeled by 4

circular, heat source of finitc radius 'a at 6le A.U6 y - G, in the

semi-infinite region Y 2_ 0. The updraft is the result of the buoyancy

of the heated air above the plate. To replace the upward moving hot air,

there is induced an indraft of the cold ambient air moving toward the

plate in a more or less horizontal direction. There are no significant

thermal effects in this induced flow. Complex interactions between

these two distinctively different types of flow take place In the region

near the plate. This fact precludes the applic4bility of the familiar

boundary layer approximations.



Theoretical investigations of free convection problems have been

concerned primarily with problems of simple geometry such as a fluid

layer above a large, horizontal, heated surface, or one located between

two large, horizontal, parallel surfaces. These geometries allow one-

dimensional forwilaticns. Using Boussinesq approximations (1),

Howard (2) obtained a solution for the one-dimensional turbulent =onveco

tion above a heated horizontal surface. He has demonstrated agreement

At some distance above the surface where the updraft is a dominant

feature, the flow resembles a free jet. This flow region is called the

convection plume. The boundary layer approximations are then applicable

(4). Similarity solutions have been obtained for problems such as

convection above a line heat source or a linear heat source of finite

width. The results are in reasonable agreement with experimental

measurements (e.g., reference 5, 6 and 7). Because of the conditions

of zero average shear stress and heat flux along the plume axis and at

infinity, the shear stress and heat flux terms appearing in the governing

differential equations may be eliminated by integration in the trans-

verse direction from the plume axis to infinity. The solution to the

problem may be obtained by use of either assumed or measured profile

functions of mean temperature and velocity in the transverse direction.

-Numbers in parentheses indicate references listed in

the Bibliography.
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Since no explicit knowledge of the turbulence structure is necessary

for obtaining the plume solutions, the ttudy of turbulence structure

even in the plume region has been only in the infant stage (8).

For multi-dimensional flows of the type studied in this investiga-

tion, the highly non-linear nature of the governing equations effectively

precludes analytical solutions. Recent development in numerical methods

utilizing large digital computers has made possible the treatment of

some of the non-linear features in the equations of motion, for such

problems as convection in an enclosed cavity (9), and wake flow behind

an obstacle (10). Reasonably successful solutions can usually be

obtained for problems of this nature. An additional uncertainty in the

problem formulation for the work described here derives from the fact

that an infinite domain must be approximated by a finite one and it is

not clear how to specify boundary conditions at the artificial boundaries.

Beyond this, it is in general not easy to demonstrate that the results

of numerical calculations of complex non-linear phenomena actually

constitute a valid solution of the problem as formulated.

In view of these multiple uncertainties, the proper initial

approach is to build understanding on the basis of a simple numerical

calculation model which is easily interpreted in the light of experi-

mental evidence and which can be reduced to analytically tractable

limiting cases for validating the calculations. This approach has,

to varying degrees, been followed for several free convection problems

Io
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(e.g., references 11, 12, 13). Among these, only one (13) describes

numerical flow field calculations directly relevant to- the present

problem. Unfortunately, no correlation with experimental data was

reported.

Although there exists a large body of experimental literature

concerning free convection in general, very little is reported which is

directly applicable to the present study. The particularly difficult

experimental feature of this problem is the accurate measurement of

the flow velocity vector. For any reasonable experimental dimensions,

velocities near the heater plate are small, i.e., on the order of a

fraction of a foot per second. Moreover, turbulent fluctuation

velocities in some regions of the flow field are of the same order of

magnitude as the mean. In the experimental portion of this investigation,

a hot-wire anemometer was used to obtain flow field data. Toward the

low end of the velocity range of interest, hot-wire techniques suffer

from orientation effects due to local perturbation of the flow by the

hot-wire itself. Recently, laser doppler techniques (14,15) have been

developed which may obviate most of the difficulties associated with

hot-wire techniques. However, these techniques appeared after the hot-

wire measurements reported in this thesis were well underway, and were

not used for the present work.

SCOPE OF THIS WORK

This thesis consists of two major parts: experimental measurements

and numerical flow and temperature field calculations. A constant



temperature hot-wire anemometer together with a thermocouple was used

for obtaining the velocity and temperature data. The numerical calcula-

tion was intended for exploring the qualitative features of the flow

field. Therefore, calculations were made based on the Boussinesq

approximations (1) incorporating a constant eddy diffusivity model.

With the mesh spacing (0.75 inch) used in the study, the flow between

the ground and the nodel points next to it cannot be predicted. Since

the indraft at the ground level is one of the most interesting features

in the flow field, the numerical results must be supplemented to make

possible the indraft prediction very near the ground. This was

accomplished by an integral method.

JI
I:

!I

!I
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i. II. LITERATURE SURVEY

The quantitative investigation of a fluid layer heated from below

may be traced back to the late 1800's when Thomson (16) and later

Benard (17) observed the flow patterns following the onset of thermal

instability. Lord Rayleigh (18) used a linearized stability theory and

established the criterion (a critical Rayleigh Number) at which convective

motion connences. Since then the linear instability properties for

fluid layers of infinite horizontal extent have been studied by a

number of investigators. A comprehensive account of this type of

problem appears in Chandrasekhar's book (19).

The convection which develops due to a heated surface of finite

size is the subject of concern in this investigation. Due to the three-

dimensionality of the flow configuration, this problem is quite different

from that due to an infinite surface. Linearization has not been

possible, and no analytical approach to this problem has been reported

in literature.

Examination of the available literature reveals that knowledge of

the turbulent flow field above a heated horizontal plate of finitc

extent exists only in a primitive state. This may be attributed to the

intrinsic non-linearity of the basic governing equations. It is

complicated further by the lack of an adequate description of the

turbulent transport mechanism. Relevant experimental, mathematical

and numerical studies are discussed below.
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EXPERIMENTAL STUDIES

The measurement of free convection above a heated horizontal surface

was apparently first reported by Ramdas (20,21). He measured temperature

i5 variations above heated land surface (e.g., during the day) and (oncluded

that the variation of temperature was most rapid nearest to the surface,

and was linear. Information of this type is important to the under-

standing of mass movement of the atmospheric air (wind formation) and

many early investigations were made by meteorologists (e.g., references

k
!t 22, 23, 24).

Heat transfer data of an engineering nature were presented by

Schmidt (25), who photographed the boundary layer formed in the

neighborhood of a heated horizontal plate. Later, Fishenden and

~Saunders (26) measured the heat transfer from horizontal, rectangular

plates of sizes up to 2-foot square and at temperature up to 1000OF above

the ambient. They presented data for both the cases of a heated surface

facing up and facing down buc gave no detailed description of the

experimental configuration. The data were correlated in the familiar

fashion of Nusselt Number (Nu) versus Rayleigh Number (Ra). For the

turbulent range, the data gave the correlation:

Nu = constant (Ra)I /3

Since Nu contains a length scale and the heat flux to the first

power and Ra contains a length scale to the third power, the above

correlation implies that the heat flux is independent of length scale

in the turbulent regime. A comprehensive summary of the heat transfer



data from horizontal plate was compiled by Jakob (27), however, little

in the way of experimental detail and measuremeat technique were

discussed.

Townsend (3) measured the temperature fluctuations above the

middle of the uniformly heated bottom of an open-topped box (30cm x 40cm

x 56cm high). All the measurements were made within 8 cm of the bottom

surface. The mean temperature aistribution near the surface was

reasonably linear. From the implied temperature gradient and the overall

beat transfer, he obtained the same correlation as did Fishenden and

Saunders (26). The data showed relatively large scatter when the surface

temperature was high. The largest temperature fluctuations occurred

within 0.5 cm of the surface and were about 20% of the temperature

difference between the plate and the ambient. The rate of spatial

temperature decay was found to decrease with plate temperature.

Tritton (28) investigated the turbulent free convection above a

heated plate inclined at a small angle to the horizontal. He used a

resistance wire thermometer to measure the temperature and a quartz

fiber anemometer to measure the velocity parallel to the plate in the

boundary layer region. He found that the temperature field was not

greatly altered due to plate inclination (no systematic variations were

observed) and that the mean temperature field was largely controlled by

the turbulence. He succeeded in measuring the velocity in the boundary

layer region by observing the deflection of a cantilevered quartz fiber

in the flow field. This method, however, was apparently handicapped by

the lack of a continuous recording technique.



9

Project FLA.'EAU (29) is a program of research on large area fires.

4During recent years, a large amount of experimental data (e.g., fuel

consumption rate, flow and tmperature field information, radiation

effects, etc.) has been collected from large size experimental fires of

horizontal length scale up to 1000 feet. Little systematic analysis ofI these data has been reported.

Recently, Parker, Corlett and Lee (30) attempted to test the

hypothesis that Grashof number is unimportant in determining such flow

field characteristics as inflow velocities. Using a hot-wire anemometer,

they measured the inflge velocity at the edge of a square array (24" x

to the hypothesis, should scale the September 1967 FLAmEAU test fire.

24" ofe hothizontallrnd letrhetmer eleent FLhich, acco frin

Insofar as the severely limited prototype data permitted comparison, the

hypothesis was found correct. Lore data of the same work in improved

form may be found in reference 31.

MATHEMATICAL STUDIES

Boussinesq (I) in 1903 introduced nis well-known approximations for

calculating thermal convection problems. The Boussinesq approximations

are: (1) Density variation due to pressure (as opposed to temperature)

variation is legligible; (2) Density variation in _.At governing

differential equations is negligible except in the buoyancy term in the

momentum equation.

The mathematical formulation of the problem of free convection from

a horizontal plate was discussed by Stewartson (32). He demonstrated
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that boundary layer approximations were no longer applicable. Thus,

purely mathematical treatments of this problem have so far been restricted

to the one-dimensional case. Howard (2) formulated a one-dimensional

problem using the Boussinesq approximations. He was able to predict

Townsend's experimental data (3) from his calculations.

Recently, Morton (8) has discussed the turbulent transport in a

convection plume and formulated the plume problem afresh. His calcula-

tions are in preparation.

NUMERICAL METHOD

Numerical methods are a very powerful tool for solving non-linear

and multi-dimensional flow problems. Several numerical flow calculations

for free convection problems appear in the literature. These calculations

have all been based on the formulation using Boussinesq approximations

incorporating the assumption of constant fluid properties or constant

eddy diffusivities, and have dealt with problems with well defined

boundaries (within a rectangular cavity, e.g.). In most procedures a

time advancing (transient) scheme has been used to obtain eventually

steady state solutions. Typical of these are work by Wilkes (9),

Deardorff (33), and Fromm (34). Torrance (43), in a recent paper, has

made detailed comparisons of five transient type finite-difference

computation schemes (9,34,43) for laminar free convection in a vertical

axisymmetric enclosure with a small heated spot centrally located on the

floor. He concluded that the calculated flows for all methods were

similar and the required computer times were also of comparable magnitudes.
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The work by Nielsen (13) is probably the most directly relevant to

this thesis. He calculated the flow field due to free convection over a

heated, horizontal, circular surface. The calculation was intended for

the modeling of the flow fields generated by a mass fire. A steady state

formulation including possible rotation about the axis of symmetry was

chosen. The use of Boussinesq approximations and constant eddy diffusivity

assumption in his calculations reduced the governing differential equations

to the form of a laminar flow problem in which Grashof number is the

governing parameter. Because of the rather large equivalent laminar

Grashof number implied in his calculations ( I01 0) through the choice

of eddy diffusivity (20 ft2/sec), diameter (4340 ft) and surface tempera-

ture rise (2000F - 8000 F), the validity of his results is uncertain.

His results showed that earth rotation has little effect on the overall

behavior of the flow field. No interpretation or experimental correlation

was reported in reference (13).5

Laminar free convection due to a heated horizontal plate (35) and a

horizontal disk (36) in a full space for small Grashof numbers (<300)

have been reported in the recent literature. These studies were carried

out using the Boussinesq approximations, consr-t.. fluid properties and a

steady state formulation. At the conk.usions of their report, Kane and

Yang (36) recommended the stucy of cases for higher Grashof numbers using

a transient type formulation such as that reportea in references (9),

(34) and (43). This particular work incorporatirg a GrT defined

I2



explicity in terms of an equivalent surface temperature rise was carried

out in the numerical calculation part of thi.s thesis. The details are

discussed in Chapter VI.
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III. DESCRIPTION OF EXPERIMENTAL WORK

The objective of the experimental program was to investigate the

turbulent flow and temperature fields above a heated, circular, hori-

zontal plate which was mounted flush with the ground surface. Both flow

visualization and flow and temperature field measurements were conducted

in this program.

EXPERIMENTAL APPARATUS

The experimental apparatus for this study consisted of three major

items: the heater assembly, the traversing mechanism, and the platform

assembly. The size of the experimental apparatus was designed so that

fully turbulent flow could always be obtained. Since any laboratory size

free convection flow field is very weak, any side wind would easily break

the flow symmetry. Therefore, the experimentation was conducted indoors.

The overall arrangement of the apparatus is shown in Figure la,

-1 Flow visualization is a useful means of gaining understanding of a

1 flow field. Shadow observation ana pnotography are well suited to this

problem. The required collimatec light was approximated by a high

intensity mercury arc lamp placed at a large distance from the heated

plate. Therefore, a basement laboratory aajacent to a long hallway was

chosen as the site of the experiment. This location was also desirable

because it was free from air currents that woula disturb the light path.
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Heater Assembly

The heater assembly used in the apparatus is shown in Figure 2. A

one-half inch thick by 24 inch diameter aluminum plate was heated by

radiation from an electrical hearing unit located directly below it. The

heater assembly was mounted in the center of an 8' x S' horizontal, vooden

platform such that the aluminum plate surface was flush with the floor of

the platform which simulated the ground surface. Electricity was supplied

to the heater unit by a variable voltage power transformer (0 - 110 volt).

By this means the power input to the heater unit could easily be set for

each experimental run.

Number 14 Nichrome V wire was used for heating. It was placed in

equally spaced (0.4" apart) parallel slots cut in a 1/2" thick by 24"

diameter tA'ansite board. This arrangement permitted free lengthwise

movement due to thermal expansion. The wire was held in place by a

1/8" thick by 24" diameter copper plate. A 1/16" thick asbestos sheet

was sandwiched between the copper and the transite plates for electrical

insulation. The heating unit was placed in an aluminum pan which was

insulated on the inside wall with a high temperature insulation. * The

aluminum plate was supported freely by the heads of four equally spaced

bolts protruding from the aluminum pan. The outside surface of the

copper plate in the heating unit and the underside surface of the aluminum

INSULAG, k = 0.7 But-in/hr-ft2-°F at 1000°F and lower for lower
temperatures. Detailed information may be found in Bulletin No.
332-A, Quigley Co., 415 Madison Avenue, New York 17, New York.



plate were painted with matte black high temperature paint. A 112" air

gap was maintained between these two painted surfaces. Due to the high

thermal conductivity of copper and the closely spaced heating wire, the

temperature of the copper plate was very uniform. This arrangement

permitted indirect heating by radiation which insured a uniform heat

flux to the aluminum plate. The aluminum pan was supported at its

periphery by the platform. An insulation jacket was placed outside

the aluminum pan for the purpose of low temperature insulation. The

heat loss through this insulation was about 25% of the total electrical

power input to the heater assembly. With temperature measurements at

various locations in the insulation jacket, an energy balance calculation

Icould be made for the heater assembly.

Traversing Mechanism

The traversing mechanism is shown in Figure la and lb. It was

designed to provide for translation of a hot-wire probe in three mutually

perpendicular directions (translation parallel to the vertical axis of

the plate, and horizontal translations in the radial and the tangential

directions) plus rotation about the probe axis.

Fuller paint - flat black primer. Ordinarily used for painting
fireplace walls. Satisfactory for temperatures up to 10000 F.
Based on the lateral surface area, 20% of the heat loss from the
side wall of the insulation jacket was assumed to be from the

copper plate. The radial cemperature gradient thus calculated
was less than i°F/ft.

***No. 4 vermiculite (a water-repellent masonry fill insulation)
was used in the jacket (k = 0.55 Btu-in/hr-ft 2-OF at 2000F,
tabulated values of k may be found in Special Report No. 256,

Research Laboratory, Zonolite Company, 1827 Benson Avenue,
Evanston, Illinois.
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A traversing head supported by an 8-foot long horizontal bar was used

to perait the radial movemnt. The ends of this horizontal bar were

guided by two vertical supports fastened to the wooden platform for the

vertical movment.

The method of mounting the hot-wire probe is shown in Figure 3. The

hot-wire probe could be rotated by rotating either the probe holder or

the probe support. Tangential motion of the probe was achieved simply

by sliding motion of either the probe holder or the probe support.

Small ball bearings were used for guiding all translational movesents

except in the tangential direction. A counterweigbt was used to balance

the weight of the horizontal bar so that it could easily be moved

vertically.

Ilatform Assembly

The platform assembly consisted of two main parts: the wooden plat-

form and the screens. The platform supported both the heater assembly

and the traversing mechanism. The floor of the platform was made of

two sheets of 3/4" x 4' x 8' plywood placed side by side. A circular

opening large enough for the heater assembly was made at the

center of the floor. A small concentric circular opening was cut in a

piece of 3/4" x 4' x 4' plywood board bolted below the floor. The step

thus formed served as a support for the heater assembly (see Figure 2).

Four pieces of 8-foot long angle iron were bolted to the bottom of the

floor for reinforcement. The floor was raised to a level approximately

10 inches above the floor of the laboratory and was firmly supported by

twelve wooden legs.
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To minimize the effects of air currents inside the room, the region

above the platform was enclosed on all four sides by vertical sections of

ordinary window screen (14 x 18 mesh galvanized iron) and by a horizontal

section of screen positioned 7 feet above the platform. The screens were

made such that the traversing mechanism could be operated from outside of

the screen. Since the turbulent flow field was generated from the hot

plate which was far from the screens, and since the turbulence generated

by free convection must greatly exceed that in a calm ambient atmosphere,

the presence of the screens would have very little effect on the turbulnece

level in the flow field.

FLOW VISUALIZATION

General Discussion

Due to the large size of the apparatus, many of the well-established

flow visualization techniques, such as interferometry or the Schlieren

method, were ruled out for this study. Two basically different flow

visualization methods were investigated: smoke tracing and shadow-

graph. The latter method was finally chosen for this study because of

*A dense smoke is generated by pouring FOG JUICE (a petroleum

derivative, available in theatrical supply stores) on the hot
surface. The fluid is evaporated upon contact with the hot surface
thus forming a smoke which is indicative of the pattern of the
flow field. The heat flux available from the plate was small
(- 0.25 Btu/sec-ft2). Due to heat removal, the plate temperature
would drop so that shortly after the application of the fluid, it
was evaporated in an erratic manner. This limited the possible
observation period to only a few minutes at a time. The difficulty
of uniform application on the plate without disturbing the flow
was another undesirable feature of this method.

f
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the capability of wide coverage and unobstructed continuous observations.

The basic requirements for the shadow method are a collimated light beam

and a projecting screen. A General Electric B-H6 mercury vapor arc lamp

was used for the light source. This was a quartz-capollary enclosed arc

1.5 mx 25 mm with a total flux of 60,000 lumens. The lamp dissipated

900 watts and was cooled by a 30 psig air supply. In order to approximate

a collimated light beam, this light source was placed at the far end of

a hallway in the basement laboratory (~165 feet from the hot plate). A

translucent viewing screen made of a sheet of ordinary tracing vellum

was placed normal to the light path about 20 feet on the other side of

the hot plate. Due to the light transmission of the screen, it was found

quite satisfactory to view the shadow from hehind the screen.

For photography, a piece of household curtain material (aluminum

coated lining) was hung on the wall normal to the light path about 27

feet on the other side of the hot plate. Photographs were taken in

front of the screen at an angle just large enough not to block the light

path (Negative Tri X Pan 35 mm film was exposed f2 at 1/30 second and

developed in Acufine for an ASA rating of 1200).

Flow Field Description

The flow field about the heated plate was viewed using the shadow

method. Figure 4 shows the shadow pictures taken at two plate mean

temperatures by photographing the reflection of the shadows from the

aluminum coated lining screen. These pictures show that the overall

flow field consists of two major regions which are separated by a fairly
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well defined boundary. Above the plate and inside this boundary is a

region here called the primary flow region in which there is a dominant

upward moving stream of eddies. The upward flowing column is fully

turbulent and is constricted about the axis of symmetry (the centerline)

of the plate. It may be seen from Figure 4 that the flow boundary is

more sharply defined for higher plate temperature (or equivalently higher

heat flux). This phenomenon has been repeatedly observed.

Outside the boundary is the region of secondary flow which moves

across the boundary into the primary flow region to replace the upward

moving hot air. The temperature in the secondary flow is substantially

uniform. Because of this, it is impossible to visualize in the shadow

picture. The shape of the flow region boundary together with knowledge

of the velocities from direct observation suggest that the secondary

flow (the indraft) velocity is largest within a few inches above the

ground.

It was observed that the flow field could be upset by even a small

ambient disturbance. This is to be expected, in view of the very weak

velocity field. Careful observation of the shadow revealed an interesting

feature of the disturbed flow field. In a closed room of still air, the

flow field remains symmetric. If a small disturbance is introduced,

e.g., by placing a small piece of curled paper near the edge of the plate,

the flow field sometimes is disturbed. A clearly defined continuous

whirling column of finite width may be seen, as illustrated in Figure 5.

This whirl starts from the plate surface and eventually penetrates upward



:or several heater plate radii. In shape this whirl may be straight or

curved, wide or narrow. It may stand still or wander. Its life may

vary from a fraction of a second to a few seconds. For large disturbances

such as bulk motion of the room air, the occurrence of this ifhirl

becomes much more frequent and the whirl width may be as wide as 2 inches.

Further studies of this phenomenon will certainly be of interest.

For the purpose of this experimental study, flow field symmetry is

essential. In order to minimize any room disturbances which might

break the flow symmetry, the screens described in the previous section

were installed. Shadow observacions showed that these screens did

indeed stabilize the flow field.

lie turbulence in the primary flow region is of course another

interesting feature of the flow field. It is more appropriate to describe

the turuulence in conjunction with the hot-wire data Li the discussion

of the turbulence will be postponed until Chapter V.

-3

HEATER PERFORMANCE

In free convection flows, the piae temperature and the heat transfer

are related. The performance of the heater can be characterized by

either the mean temperature difference between the plate and its ambient

or the mean heat flux.

Plate Temperature

The surface temperature distribution of the heated aluminum plate

was measured by thirteen thermocouples installed in the four radially

A
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milled slots on the underside of the place (Figure 6). These chermo-

couples were made from Number 24 "high accuracy" copper-constantan wire

(L & N Wire No. 24-55-il, error = 1 1/40F at 1750F with reference junction

at 32oF), and were connected to a 24 channel switching box which was

directly connected to a potentiometer. X.ly time mean temperatures were

measured. Figure 7 shows the measured plate surface temperature distri-

butions for two mean plate temperatures. It is noticed that the plate

temperature is quite uniform in the central region and drops off slightly

toward the edge of the plate. This fact is expected, and attributed to
I

the more effective cooling by the cold air near the edge of the plate

(considering the fact of uniform heat flux input to the plate). Assuming

chat the heat flux is 2roportional to the 4/3 power of the plate tempera- 4
ture rise above the ambient (27), this temperature non-uniformity repre-

sents a maxi-im of 3% local heat flux variation. As far as concerns the

boundary condition for the overall free convection flow field, this

slight temperature non-uniformity is insignificant.

Energy Balance

Twenty No. 24 iron-constantan thermocouples kL & N Wire No. 24-50-39)

were installed in the insulation jacket of heater assembly for energy

balance measurements (Installation details are given in Figure 2). These

rhermocouples were also connected to a 24 channel switching box through

which any one of them could be connected to a potentiometer for reading.

The total energy loss from the heater assembly is the sum of energy

lost to the surrounding air "y radiation from the aluminum plate (Qp),

I
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by convection and radiation from the asbestos ring (Qa), by convection

and radiation from the floor of the platform (Qf), and by conduction

through the insulation jacket (Qj).

The net convective heat transfer from the heated plate, to the air

above (Qc) is computed as follows:

Qc - Qi, - Q!:ss - 3.413 EI - (Qp + Qa + Qf + Q )

where E voltage drop across the heater, volt

- current passing through the heater, ampere

Q = heat transfer rate, Btu/hr

Energy balances were made for two heater power settings. The detailed

calculations of these terms are given in Appendix B. A summary of all

the loss terms is tabulated below:

Table 1. Energy balance terms.

Run Q Qa Qf Q Q

No. volt F OF B/hr B/gr B/hr B/hr B/Ar B/hr

132 8.6 520 77 3880 229 525 241 347 2538

2 108 7.1 410 77 2615 133 359 114 240 1769

It is clear that the loss terms are all small relative to Q.. Therefore,

the percent accuracy of Qc is better than any of the heat losses. As a

check, a direct energy balance measurement was made by blocking off the

heat dissipation from the aluminum plate. In this manner, the energy

input to the heater assembly at any given plate temperature would

represent the net heat loss from the assembly (less the radiative heat

loss from the aluminum plate). The results of this direct measurement
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and those calculated based on temperature measurements are shoiin.in

Figure 8.

Heat Transfer Correlation

An examination of the significant governing variables for the heat

transfer phenomenon leads to the following relation:

Nu - f(Pr, Gr, $A)

where Nu = hD/k, Nusselt number,

Pr - PC P/k, Prandtl number,

Cr = gPGD3 p2/&2, Grashof number,

and h, D, k, P, g, f, 40, and p are, respectively, the average heat

transfer coefficient, plate diameter, thermal conductivity, dynamic

viscosity, gravitational acceleration, coefficient of volumetric expansion,

temperature difference between the plate mean and the ambient, and density.

For weakly buoyant flows (4,27,37,38) such as in free convection, the

parameter #A$ is not significant enough to affect the flow by itself and

is absorbed in Gr. This can also be seen from the governing differential

equations for small density variations (see Chapter VI).

For free convection, the flow becomes fully turbulent when the

Grashof number is very large (>106). This can be achieved most effectively

by making D sufficiently large. Since the heat flux of a very large

surface can only be finite and cannot be affected by changing its size,

we assume that the heat flux is independent of the size D, i.e.,

Nu OC (Gr)
1/3



Furthermore, experimental correlations (26,27) indicate that the primary

effect of Pr* can be taken into account by grouping it with Gr to form a

Rayleigh number Ra, i.e.,

Nu - constant x Ral
/3

where Ra = PrGr. Using the property values of air at the ambient tempera-
ture, and the definition of heat flux (q, Btu/hr-ft2

q = hAO

Nu and Ra for the two runs in Table I may be calculated. The relevant

values are given below:

Table 2. Dimensionless heat transfer parameters.

Run q, Btu/ h, Bu/
-o hr-ft2  hr-ft -°F Pr Nu Gr x 10-10 Ra x 10"I0

No. _______ _ _ _ _ _ -OF

1 800 1.81 0.72 244 0.772 0.556

2 12 560 1.68 0.72 226 0.573 0.413

The above data are plotted in Figure 9 and are found to be in good

agreement with experimental results of Fishenden and Saunders (26). One

may observe that the result Nu C RaI/3 is consistent with the present

data, as expected. The proportionality constant was calculated to be

0.141, so that:

Nu = 0.141 x Ra1 /3 . (3-1)

The Prandtl number for air is substantially a constant in
the range of temperature in this investigation.
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VELOCITY MEASUREMENT

General Discussion

We are concerne! with the velocity measurement in the turbulent

free convection regime. In a flow field of this type local mean velocity

varies up to 3 ft/sec, but the velocities over most of the flow field are

only on the order of a fraction of a foot per second. The turbulence in

the flow field is characterized by low frequency, high amplitude fluctua-

tions (see Chapter V for detailed discussions). Very little has been

reported in the literature concerning this type of velocity measurement.

Tritton (28,39) used a quartz fiber to measure the mean velocities in the

boundary layer region above an almost horizontal heated plate. He used

a telescope to observe the deflection of the cantilevered quartz fiber

in the flow field. Since there is no easily recorded signal, this method

is not considered suitable for large number of measurements. Very

recently, the laser doppler technique (14,15) has been successfully

applied to turbulent flow field measurement. Aside from the obvious

advantage of undisturbed measurement, it is possible to use this technique

to measure both the instantaneous and mean velocity component in a desired

direction. No attempt was made to use this technique for the present

studies since the measurements for this experiment were well underway

before the possibilities of using such a technique became apparent.

The hot-wire technique is very useful for turbulence measurements.

However, in slow velocity measurements, it suffers severely from

orientation effects due to the free convection field generated by the
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wire itself. Nevertheless, the ease of meeting the time response

requirement, ease of recording, and the immediate availability of the

required electronic components prompted the decision to use the hot-wire

method for this experiment. In order to minimize the effects due to

heat generated in the wire, earlier attempts were centered at making

the sensing wire as small as possible. The smallest wire used was

0.00012" diameter Pt-10. Rh wire. Unfortunately, wire of this size did

not survive the vibration resulting from large probe traveling. Moreover,

as long as the wire is at a higher temperature than the ambient, free

convection effects are always present.

Collis (40,41) in his reports on forced convection of heat from

cylinders at low Reynolds numbers (Re = dVplp), gave the following

criterion:

Free convection effects are negligible when: Re > Gr1/3

This expression implies that free convection effects are unimportant when

the local flow velocity undisturbed by the wire is larger than (gAta
1 /3.

It shows also that free convection effects are independent of the wire

diameter and that they can be reduced by operating the wire at small

values of As, the temperature difference between the wire and the ambient.

The resistance and, hence, the calibration of a thin wire tends to

drift due to self-straining. This situation may be improved by choosing

a large wire diameter and by properly soldering the wire to its supports.

Large wire diameter is desirable for its strength but it reduces the wire

-- I
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resistance and hence the output signal (the voltage drop across the wire)

for fixed temperature operation. As a reasonable compromise, the hot-

wire chosen was bare platinum wire 0.001" diameter by 0.,5;" long. This

kind of wire was found to be quite satisfactory in terms of strength,

repeatability of results, sensitivity, directional sensitivity, and

fast time response (see Chapter V for more discussions on the choice of

Phis wire length). The time constant for this wire was calculated to be

less than one millisecond for constant temperature operations (42). In

order to minimize the effects due to the free convection field induced

by the hot-wire, a low wire operating temperature (i.e., a small overheat

ratio) was used.

Hot-Wire Calibration

A TSI* model 1010 constant temperature anemometer was used for

generating the hot-wire signals. in order to account for the free convec-

tion effects, extensive calibrations were made in which both the wire

oricatation and the velocity vector were taken into consideration.

A calibration tunn.- was designed to meet the requirements of

variable flow velocity, orientation, and air temperature. Figure 10

shows a schematic diagram of this tunnel. The tunnel test section was

an enclosed V" T.D. alumin--n can, the axis of which could be rotated

through an angle of 180 degrees on a supporting bracket. An air jet

issued from a I" diameter orifice with a rounded inlet. Six sheets of

Thermo-Systems, Inc., 2500 Cleveland Avenue North, St.
Paul, Minnesota 55113.

2%
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spaced 100 x 100 mesh bronze wire strainer cloth were placed upstream of

the orifice to straighten the flow. The hot-wire probe was inserted into

the tunnel through a removable support plug, when the wire was in place

it was about 1/2" downstream of the orifice exit plane. The probe is

shown approximately to scale in Figure 3.

The uniformity of the velocity distribution in the jet was checked

by traversing a 0.2" long hot-wire probe along the jet diameter. The

velocity distribution in the center region of the jet was essentially

uniform. 4. drop of approximately 1% of the hot-wire bridge voltage output

was observed at 95% radius. With the hot-wire placed in the center of

the jet during calibration, the total length of the hot-wire was exposed

to a uniform velocity stream.

The velocity at the orifice could be varied from 0 to 3 ft/sec by a

control valve which was located between the outlet of a pressure regulator

and the inlet of a Manostat flow meter. * This meter was used for

measuring velocities below 2 ft/sec. A water U-tube manometer was used

for measuring higher velocities. Figure 11 shows the calibration curves

for the flow meter and the U-tube expressed in terms of the orifice exit

velocity at a standard condition (70°F and 30" Hga) versus the meter or

U-tube readings. The temperature of the jet could bu varied thr .uugh the

use of a 100 watt cartridge type electric heater which could heat the air

up to 160°F at an orifice exit velocity of 2 ft/sec.

Manufactured by Manostat Corporation, New York.
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The desired wire operating temperature was determined by comparing

the calibration at several wire temperatures. It was found that operating

the wire at approximately 300OF was quite satisfactory for the present

applications. At this wire temperature, a reasonably good wire sensitivity

could be obtained and the free convection effect was found negligible

for velocities greater than 0.15 ft/sec.

Figure 12 shows a set of hot-wire calibration curves. This set of

curves consists of the calibrations of a horizontal wire at constant

wire operating temperature ( -300OF or 4.50 0 wire operating resistance)

but at three different ambient air temperatures. The calibration data
i

were fitted into the following functional form by the method of least

squares:

E A + (3-2)

where E is the hot-wire bridge voltage output, W the velocity, and A and

B are constants depending on the ambient temperature through their

dependence on fluid properties. Direct comparison of the data for air

blowing upward and blowing downward shows that the free convection effect

is indeed small for W<0.15 ft/sec.

For small velocities on the order of 0.15 ft/sec, another set of

calibration curves for the hot-wire was prepared (Figure 13). It is

seen that the velocity vector of a laminar flow can be determined once a

set of two hot-wire outputs (for wire horizontal and vertical) at the

same location is obtained. This set of calibration curves was used only
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for reducing the indraft velocity data for which the flow was essentially

laminar and hence no non-linear averaging process was involved as would

be the situation for turbulent flows.

It is remarked that for small velocity and laminar flow such as the

indraft velocity measurements, wire orientation effects are important

and therefore were considered in determining the velocity vector. For

the turbulent flow regime of this study however, the wire output is

substantially independent of orientation because of the relatively high

fluctuating velocities.

Further details on hot-wire data taking and the response equation

will be discussed where appropriate in Chapter V.



IV. TEMPERATURE FIELD AND ANALYSIS

The overall temperature field may be divided into two main regions:

the region very near the plate (within 1/2" of the plate" and the region

above. In the region near the plate, a large temperature gradieait

exists. The major p,rtion of the overall temperature drop takes place

in this region. In the region above, both the air temperature and the

temperature gradient are much smaller than those in the near-plate-region.

For this reason, the measurements for these regions were taken at separate

times with different thermocouple mounting methods. They will be discussed

under separate headings.

*i Air temperatures in both of these regions were measured with a No. 34

gage copper-constantan thermocouple. This thermocouple was calibrated

against a pair of certified Pt and Pt-Rd thermocouples in an oil bath

(see calibration curve in Figure 14). The thermocouple data output was

displayed on a BRUSH continuous chart recorder via the amplifier output

circuit of a Hewlett Packard Type 413A DC null voltmeter. The time

average of the thermocouple output (time constant -I sec) was obtained

by use of a large time constant (- I minute) integrating circuit similar

to those shown in Figure 15. The temperature at each measured location

was recorded on the chart for a period of two to five minutes and the

steady state thermocouple output was used.

I . . .



1YAN" TMEvRATURE FIELD ABOVE TC- PLATE

The mean temperature field was r.ezsured si=ltaneously with ,e

ve'locity field. The ther couple was mounted on the hot-wire probe

(Figure 16) and traversed with it. Since temperature is a scz.lar quantity

and the response of a thermocouple is nearly linear with temperature in

the range cf inrterest, the temperature field measurement is a relarix-iy

simple task compted with that uf the velocity field. Several runs were

made for each of the two mean plate temperatures investigated.

In order to determine the symmetry of the temperature field, measure-

ments were made at three locations (on the same radius but spaced at 900

apart). Data showed that discrepanLies among -hese three readings were

generally very small. The largest (observe, only c,.casicnally) were

less than 3% of he average reading. The discrepancy was believed to be

mainly due to the large period .Priacion of the air temperature in the

.2 laboratory room and to a less extent due to plume leaning. Shadow viewi

showed that the plume was almost always str-iight up even when the labora-

tory door was wide open, and that the ouration of occasional plume leaning

was too short to affect the mean tcmpe:ature readings significantly. In

view of the data scatter (> ± 30F) shown in Figures 17, 18 and 19,

asymmetry of the data was considered to be relatively insignificant.

For each plate temperature the centerline temperature profile and

three horizontal temperature profiles were obtained (Y = 3", 6", 12"

abov, the plate). Figure 17 shows the centerline temperature profiles

for both plate t'tperatures investigated. Figures 18 and 19 show the
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horizonca! I 'r.-peracure profiles =asLre for the rwo plate te peratures.

in these figures, each point represents the average of six to ten man

-e-perature readings. A line Is drawn through each average temperature

to indicate the error of * one standard deviation. it is interesting to

note that the temperature drops off almost linearly wth radius in the

region near the centerline.

Figures 18 and 19 4how that lower average air te=perature and

relatively flat horizontal temperature profiles are associated with lower

plate temperature. These flat average temperature profiles imply a

larger plume width in agreement wrih Morton's analysis (38) that the

width of a weakly buoyant plume is larger than that of a strongly buoyant

plume. Because of the limited amount of data, quantitative determination

of plume width was not practical.

MEAN TEMPERATURE NEAR THE PLATE

The temperatures near the plate surface were measured with the same

chermocouple (34 gauge Cu-constantan wire) as was used for the tempera-

cure field probing; however, a different mounting method was employed

(Figure 20). Temperatures were measured at three radial locations (X =

0", 6", 12") for each vertical position Y. Because of the large tempera-

ture gradient existing near the plate, a small increment in elevation Y

was necessary. This small increment was obtained through the use of a

micrometer attached to one en6 of the horizontal bar of the traversing

mechanism. By advancing the micrometer screw against a hard stationary



surface, the whole traversing mechanism could be raised to any desired

height with respect to the plate in increments of 0.001".

Figures 21 and 22 show the temperature distribution in the region

near the plate surface for the two plate temperatures investigated

(op = 520°F and 4100F). These temperatures were obtained by correcting

the raw data for losses due to radiation and conduction (see Appendix C

for details of calculations). One may observe two interesting facts from

these temperature data. The major portion of the overall temperature

drop rakes place within approximately 0.1" of the plate. This region is

thicker for the higher plate temperature.

The surface temperature gradient is larger for the higher plate

temperature and, because of the more effective cooling near the plate

edge, this temperature gradient increases with the radius. This cooling

effect is also reflected in the plate radial temperature distribution as

shown in Figure 7.

The temperatures within 0.1" of the plate were calculated based on

the average heat flux and molecular conduction only (solid lines in

Figures 21 and 22). These calculacions show that, very close to the

plate surface, the measured temperatures are nearly the same as those

based on conduction calculations. This region is within approximately

0.02" of the plate surface. We will follow Townsend (3) and call this

region the conduction layer.
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THERMAL DIFFUSIVITY

Some estimates on the turbulent transport coefficient based on the

available temperature data are made here. Adopting the thermal diffusivity

concept, the steady state energy equation may be written as follows:

V = eH V20 + Ve H.VO

V9H*VH

or, 11 L
where V, D, fH) and V are, respectively, the velocity vector, mean

temperature, thermal diffusivity and gradient operator. tH is calculated

using the following procedure: We proceed arbitrarily to neglect the

spatial variation of Ve . This gives:

V-Va (4-1)

The value of e1 calculated from Equation (4-1) are then used to estimate

the magnitude of the neglected term Ve11 .Ve to see if the procedure is

justified.

Based on the mean temperature aata (Figure 18) the values of VO

2and V2 were obtained graphically. Using the data of V from Chapter V,

the values of fH were calculated from Equation (4-1) for the case ep =

5200F. The values of V and fN for several locations in the flow field

are given in Table 3.

The estimates in Table 3 show that the values of t are nearly

constant in the major portion of the primary flow region. eN is large

near the plate and is relatively small at the location (6,3) which is
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near cne boundary of the primary flow region. The magnitudes of the

neglected term V9i.P9 are estimated and are also give in Table 3. It is

seen cnat they are much smaller than the typical values of the term

S.VO. Neglecting of .Wmakes the values of eH somewhat coo high.

Table 3. Thermal diffusivity estimates (0, - 5200F).

Location Velocity 2in. fps a -. VO Ve HTO H

X - -U V 0F OF/ft 2  °F/sec OF/sec ft2/sec

0 1.5 0 .93 162.5 1400 93 1U .066

O 3 0 1.35 152 1673 88 5 .053
0 6 0 1.90 140 1700 68 .7 .04

0 12 0 2.22 125.5 1424 52 .1 .037

3 3 .47 .78 137 504 26.2 2.8 .052

3 6 .13 1.06 120 656 28.4 1.4 .043

6 3 .41 .45 115.3 486 4.7 .1 .01

6 6 .26 .77 98.7 142 5.3 .3 .037

.1i
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V. RESULTS AN'D ANALYSIS OF HOT-WIRE DATA

INTRODUCTION

The experimental measurements of the flow above a heated horizontal

circular plate are described here. The mean velocities and turbulence

kinetic energies are of primary interest. Using the turbulence measure-

ments, the eddy diffusivity will be estimated.

As will be shown the mean flow velocities are small (-l ft/sec) and

the turbulence velocities are on the same order of magnitude as the mean.

Due to the large fluctuations, conventioal experimental methods and

attendant mathematical simplifications for turbulence measurements fail.

No data directly relevant to tne present investigation have been published.

In any particular geometric space, the desired flow properties are

all determined by the probability density function over four-dimensional

velocity-temperature space. The data reduction procedure is based on

the idea that the essential features of this probability density function

are determined by the one-point probabiiity density distribution of hot-

wire output voltage with wire orientation as a parameter. This informa-

tion is approximated by a set of averages of hot-wire output repeated at

several orientations.

A constant temperature hot-wire. anemometer was used for this experi-

ment. The one-point averaged values of the hot-wire output and selected

low-order moments were obtained at selt.Led wire orientations. The

quantities of interest were then inferred from knowledge of these moments



ana a set of numerically simulated hot-wire data. In the following

section, the hot-wire data from direct experimental measurements will

be summarized ard a numerical simulation of the turbulence based on an

idealized computation model will be described. A data reduction proce-

dure using the above results is then discussed and the reduced data

presented. Finally, the justification of the numerical model and the

assumptions incorporated in it will be given.

HOT-WIRE ,DATA SUMARY

Instrumentation

The complete instrumentation setup is shown in Figure 15. It

consists primarily of a constant temperature hot-wire anemometer, two

linearizfrs, the integrating circuits and the recording devices. One-

point time averages of the quantities shown in Figure 15 (i.e., E, E,

E2 , etc.) are the basic data to be taken.

A 0.001" diameter x 0.5" long bare platinum wire was chosen as the

sensing element. Shadow observations showed that the eddy size was on

the order of 1", therefore, a 1/2" long wire would be a reasonable choice.

In order to determine the length effect on the resolution of turbulence

sensing, a 0.2" long wire was also made. These two wires were operated

at the same wire temperature (approximately 3000F) and were placed in

the flow field 6" above the plate. The hot-wire outputs were recorded

on an AMPEX Model FR-1200 tape recorder at a rtcording speed of 1-7/8

inches per second (ips). Comparisons were made by playing the tapes
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back at 60 ips and analyzed with a Hewlett Packard Model 302A wave

analyzer. As shown in Figure 23, there was no significant difference

between the two wire outputs in either frequency or amplitude of the

fluctuations. It was therefore concluded that for this investigation

wire length within the range studied was not an important parameter.

The longer wire (0.5" long) was used for all measurements because

of the desired larger voltage output or better sensitivity.

Characteristic Quantities of the Turbulence

Figure 24* shows some typical hot-wire output traces for both

horizontal and vertical orientation of the wire at various distances

above the center of the plate. Figure 25* shows hot-wire output traces

for a horizontal wire at five radial locations 6" above the plate. This

figure shows that the turbulence degenerates with increasing radius.

At a radius of 9" the traces indicate intermittent turbulence. At 6"

radius, the large amplitude and the erratic excursion of the traces suggest

that the hot-wire is located approximately on the boundary of the primary

flow region. Both Figures 24 and 25 show that the amplitude of the

fluctuations are on the order of one volt. This curresponds to velocity

fluctuations on the order of I ft/sec (Figure 13), which is of the same

order of magnitude as the mean flow velocity.

Since the zero velocity position of these craces depends on the
local temperatures which vary from location to location, it is
impractical to mark these traces with the corresponding velocities.
Therefore, by themselves these hot-wire traces (Figures 24 and 25)
demonstrate only the qualitative nature of the turbulence.

. .. . . . . . . .. .. .. . . ..
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The use of a wave analyzer was originally intended to obtain the

characteristic frequency of the turbulence. Analysis of the data showed

that the main contribution of the frequency was in the range below 10 Hz.

At frequencies below 25 Hz the amplitude dropped off rapidly to less

than one percent of the value at 1 Hz and became negligibly small at

higher frequencies (e.g., Figure 23). Due to the poor low frequency

capability, the wave analyzer could not be used to obtain a meaningful

time scale for the turbulence. Therefore, the autocorrelation function

of the recorded turbulence data was obtained using a PAR Model 101

correlation function computer (manufactured by Princeton Applied Research

Corporation).

The autocorrelation function of the hot-wire bridge voltage output

E is defined as:

= limf E(t) E(t + ,)dt

T-Oa -T

where r is a delay time. Figure 26 shows the autocorrelation function

of the hot-wire bridge voltage output for a few centerline locations.

Since i(i) is a pure function of delay time, the integral time scale of

the turbulence can be defined as the area under the autocorrelation

function curve (42). As shown in the tabulation in this figure, the

integrated time is on the order of 0.1 second. In other words, the

characteristic frequency of the turbulence in the flow field of the

present experiment is low (on the order of 10 Hz) which is well within

the capability of the electronic instruments used.
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We conclude that the turbulence in the primary flow region is

characterized' by low frequency ( -10 Hz) and large amplitude (- i ft/sec)

fluctuations.

Hot-Wire Response Equation

Since the cooling effect on a hot-wire depends primarily on the

velocity component W perpendicular to the wire and to much less extent

on the parallel component WI, ,it is useful to define an effective

instantaneous velczity W (44):

W = W + k2W (5-1)

where k is an experimental constant. For a wire of length-to-diameter

ratio greater than 600, k2 is essentially zero (44). Equation (5-1) will

be used to obtain the value of W in Equation (3-2). Rearranging

Equation (3-2), the following relations are obtained:

E2
E 2 - A WI/2

B

(B = W (5-2)

;E 2 _ A 4 = W 2

In these equations the ambient tempterature dependent quantities A and

B are lumped on the left hand side. We will assume and later verify on

the basis of computer simulatea output calculations that the following

ratios are substantially independent of the fluctuations in A and B.

1A
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I.z = "Wl W)# -o (5-3)

02= W2 /(W2 ) w_

where an over bar refers to the corresponding time-averaged value.

R IP Q2are primarily functions of the normalized turbulence velocity and

the wire orientation angle #w .

Data in Primary Flow Region

Eight locations in the primary flow region were probed. The data

consisted of the time-averaged values (averaging time -2-5 minutes) of

E, E2 , W and W2 for *w from -900 to +900 at 150 intervals. To facilitate

the data taking, the temperature dependent quantity A in Equations (5-2)

was replaced by a fixed value A' nearly equal to A. The data thus

obtained were used to compute the correct values of W and W2. The

conversion formulas are given below (see Appendix D for details):

= C W' - 2C2W'
2 - C22

2  6C2W( 2  2WI 2 ) + 4C2WI/
2(2WI/2 2 022) 4 C24

where C= B 2 , 02 (A-A')/B, W' = (E2-A') 2 = (E2-A) 4 .

For all the data taken, A' was set equal to 25. At this A' setting,

the whole data taking system (Figure 15) was calibrated against a known

d.c. plus a.c. voltage input. The calibrations of E2 , W', W'2 were

plotted versus their corresponding line outputs on the recorder and are

shown in Figure 27.
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Since A' was taken as a constant, we are essentially treating A

and B as constants evaluated at the average ambient temperature. The

maximum error introduced due to this assumption may be estimated from

the dependences of A and B on fluid properties (p. 79 , reference 42) and

can be shown to be on the order of 1%. As a check the effects of the

fluctuations of A and B due to temperature fluctuations is evaluated by

numerical simulations as will be described later.

The hot-wire data obtained are shown in Figure 28. The ratios

defined in Equations (5-3) at #w = 900 may be used to describe the

shape of these curves in Figure 28. These "shape parameters" and the

relevant hot-wire data are summarized in Table 4. A comparison between

W and OW shows clearly that the turbulence intensity is indeed much

larger than that reported for typical low turbulence measurements (e.g.,

references 42, 45).

Indraft Data

Two indraft profiles at the edge of the plate were measured. These

measurements were all made in the secondary flow region, a laminar flow

region. Therefore, direct measurement using only the hot-wire bridge

voltage output E was possible. Since the velocity in this region was
$

small, a relatively high wire operating temperature was desirable. The

wire was operated at approximately 4000F. A set of calibration curves

was obtained for this purpose (Figure 13). Figure 13 shows that the

velocity vector at any location can be determined once the hot-wire bridge

voltage outputs for Ow = 00 and 900 (Eh and E v respectively are obtained.

I
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The results are shown in Figure 29. Clearly, the largest indraft

occurs near the ground level.

NUMERICAL SIMULATION OF HOT-WIRE DATA

Described here is an idealized numerical model to generate simulated

hot-wire data for a given set of flow parameters. The results thus

obtained will be used to interpret data from experimental measurements.

The Numerical Model

Consider the mean velocity vector V., the fluctuating velocities

(u, v, w) and the hot-wire described in the following coordinate system:

y (axial)

U

x (radial)

where v is the random fluctuating velocity component parallel to Vm, w

is the random fluctuating velocity component in the horizontal direction

normal to v, and u is the random fluctuating velocity component in the

direction normal to both v and w such rhat (u, v, w) form a right-handed

triad. The direction cosines of Vm, u, v, w and the wire in tLe (x, y,

z) coordinate system are given below:
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Dire ction, u VM+V w Wire

X c sov sin v sin* v sinDv Cos .Co % c oo OP w

y sin*v cosv 0 sink

Z -cos,,, cos.,, sin*v cosOv sinov L cos*#, sinew

Denoting the component of u, Vm+v, and w in the direction of the wire,

respectively, by Ell E2, and R3 the above tabulation gives, after a

little manipulation:

3 = s i -(tv #d) + sin#. Cos# ris in (jw
1 Ww
R- cos*~, cos(#eva) (5-5)

E3- cos(#w-#v) - cos*,, cos* ,- lsn(w+0A

Finally, for given values of VMS (Us VS )

WT - l + (v + VE 2 +w3 2 (5-6)

2 2 2++V 2 22
W.L-u + (Vm)+ wW W

These expressions will be used in Equations (5-1) and (5-2) to generace

the desired hot-wire output.

For convenience of specification of the fluctuations, the following

norm~alized variables are defined:

7u ;v W w (5-7)

where

2 72" v 2 v 2 2 01.. 2  (58
uV U If a w 2 go(58
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are the variance of the fluctuations. The correlation coefficients of

turbulence may be written in terms of the above quantities:

- WKuV =-I- , KuS =_ML = ,etc. (5-9)

The values of these correlation coefficients may be positive or nega-

tive but must not exceed unity in magnitude.

Substituting Equatiomi(5-1), (5-6) and (5-7) into (3-2) and making

modifications for studying the effects of temperature dependent fluctua-

tions of A and B, we have:

E2l=+.U7)A+(1+voq7)BV/ 2  + k2  112] 1/4 (5-10)

For computations, we can without loss of generality take a = -1 and

V = 1. The factor 7 accounts for the fact that A and B do not have

the same dependence on temperature.

The results, with combinations of the a's and K's as defined in

Equations (5-8) and (5-9), w1l.l be used for this study. The flow

variables characterizing the turbulence (u, v, w, 0') define actually

random variables, sequences of which can be simulated with the numbers

ootained from a random number generator (see details in Appendix E),

given the values of a's and K's. After making some idealizauions

described below, the desired hot-wire response and its moments can be

readily computed as functions of the flow variables from the above

equations.
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Soi_,NUirica ~ults

Calculatdois were wde for four types of probability density distri-

butiobiA. Soie typical results are presented in Tables 5 and 6. It is

seeh that fairly good results in both reproducing input data and errors
c an be obtained from calculations using 400 amp. The effects of

the type of distribution function appear minor.

Figures 30 and 31 show ioiue sirnlated hot-wire data corresponding

to the experimputal results given in Figure 28. Resemblance in basic

shape of the data curves in Figures 28 and 30 and 31 is clearly shown.

For the hot-wire used in this experiment, the value of k' was

found to be essentially equal to zero. For data reduction, the shape

paraters and the effective flow velocity for the case: k2  0, zero

correlation and temperature fluctuations, Gaussian distribution, are

presented in Figure 32.

DATA EDUCTION

Data reduction utilizes the results of simulated hot-wire data

based on the following idealizations: k2 - 0, no correlations, no

temperature fluctuations, and Gaussian distribution of fluctuation of

each velocity component. The justification of these assumptions will

be discussed under the next heading.

The data reduction procedure is described below with an actual

example.

C
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1. Center line Locations

On the centerline, symmetry requires that ou - w and U - 0, so

the shape parameters plotted in Figure 32 are directly applicable.

Consider the data for X - 0, Y 3 3":

Shape Parameter Range of vu/Vm Common Range
of Actual Data from Figure 32 of Vu/Vm

800.775 0.52-0.55 (,.52 -0.55
0.52-0.55

0.608 0.51-0.56

The value of ou will be chosen (withir, the above common range) such

that the values of (au - v)/Vm obtained from (vu/Vm, to) and

(vu/Vm,V l) are the same, this being a requirement. In this manner,

the value of ou/Vm and (vu - ov)/Vm are found equal to 0.52 and 0,

respectively.

From Figure 32 for u/Vm ,0.52 and <VU1-LV>/Vi w 0.

W = 1.18 Vm

The hot-wire data in Figure 28 shows that:

W =1.58 fps

Finally, Vm = 1.35 fps

Ou = Ov = Ow = 0.7 fps

2. Off-Centerline Locations.

For off-centerline locations, Vm is making an angle #v with the

centerline. This angle is sot approximately equal to the phase
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shift of the peak value of the hot-wire data. Using the peak values

as a basis 0 ,&l, and W/Vm are then obtained. The rest of the

data reduction is carried out in the same manner as described in (1).

A summary of the reduced data is given in Table 7. It is seen

that the turbulence velocities are indeed large (ofcomparable magnitude

as the mean flow velocity), and that the turbulence decreases, as it

must, as the distance from the plate increases. It is remarked that in

the data reduction procedure described above the effects of local free

convection due to the hot-wire has been ignored, i.e., the hot-wire

output is assumed unaffected by the wire orientation with respect to

the mean flow. In view of the large turbulence velocities, this appears

to be justified (see Chapter IIl).

Table 7, Summary of hot-wire velocity results (s - 5207T).

X Y #v -U V u  ,sec. Fu2T
in. in. deg. fps fps fps fps (Fig. 26) ft2/sec

o 1.5 0 0 0.93 0.7 0.7 0.114 0.056

0 3 0 0 1.35 0.7 0.7 0.092 0.045

0 6 0 0 1.9 0.57 0.57 0.181 1 0.059

0 12 0 0 2.22 0.47 0.47 0.270 0.06

3 3 31 0.47 0.78 0.52 0.76 --

3 6 7 0.13 1.06 0.34 0.34 ......

6 3 42 0.45 0.50 0.34 0.17

6 6 20 0.26 0.77 0.25 0.33 ---

If we assume that the turbulence is characterized by au and the time

obtained from the autocorrelation function, then qu4 can be used to

estimate the order of magnitude of the eddy diffusivity. Table 7 Fho-ws
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that the values thus calculated are consistent with the estimates made

based priarily on temperature data (Table 3).

K JUSTIFICATIONS

Simulated hot-wire data have been obtained for a variety of cases

based on different assumptions such as: type of random number distribu-

tion function, correlation coefficients, temperatura fluctuations, and

the values of A and B. The results show that the computed values of 90

and are somewhat insensitive to the assumptions used and the values

of 92 and W/Vm show more pronounced dependence on assumptions.

Figure 33 shows comparisons of some of the typical results with

the largest differences (i.e.,12 andf/Vm). Clearly, relatively large

differences (although small by themselves) may be caused by the type of

random number distributiom functions used and the results are relatively

insensitive to other assumptions. In the data reduction procedure, only ,

the results of %, ti and W/Vm are used. In view of their insensitivity

to the assumptions, this procedure is reasonably general and the expected

error involved due to assumptions may be best shown by that of VM .

In order to show quantitatively the effects of assumptions on the

reduced data, the procedure for the actual data reduction was repeated

for a number of cases using simulated hot-wire data based on different

assumptions. Relative errors are defined as the percentage deviation of

the ct.-'ilatad results from their corresponding values tabulated in

Table 7. Results show that the relative errors of the reduced turbulence
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velocities au wv and the mean flow velocity Vm are of comparable

magnitudes. This is expected because of the dominant dependence of

errors on /Vmdescribed above.

Table 8 shows the relative errors of Vm and one case of cu . It can

be seen that the possible error in data reduccien due to the various

assumptions used is on the order of lA. The mean flow direction is

unaffected by the assumptions in any way because it is determined by

the location of the peak value of the actual hot-wire data. The error

of the mean flow direction is mechanical which is less than *20.
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VI. NUMERICAL MODL

The purpose of this chapter is to present a numerical method for

predicting the flow field near the plate.

MATHEMATICAL FORMULATION

In the cylindrical coordinate system sketched below,

yv

1''

the flow field to be described is that generated in the half space

y 2 0 by a heat source of diameter D at y - 0. An order of magnitude

analysis shows that the viscous dissipation (Eckert numbcr-%01 8 for

our problem) and the flow work terms in the energy equation are negligible

(Chapter 14, Reference 45). In the primary flow region, the region in

which there is a dominant upward moving stream of eddies, the density

(or absolute temperature) variations are small compared with the ambient

density, therefore, the familiar Boussinesq approximations are used (1).

At present, the physical behavior of the flow field is not well-under-

stood, nor have there been any proposed turbulent transport formulations

in the literature. The constant eddy diffusivity model is the simplest



57

plaus!'le turbulent transport model and is chosen for the calculations

described below. After introducing these simplifications, and a charac-

teristic velocity U8
2 - gOULthe resulting equations for the mean flow

field become the same as those for laminar free convection (13, 36).

These differential equations in dimensionless form are given below:

Continuity

aLxu) + C o (6-1)

Momentum
0 u au )u au u (24- u + v =- + +7; + (6-2)

a v + v +v'V++ L+ +T(6-3)

Energy

OT av aT 1 T'a2T a 2T(6-4)

where x, y, u, v, p, T, GrT, Pr and t are, respectively, the dimensionless

radial and axial coordinate (x = X/D, y = Y/D), dimensionless x and y

component of the mean flow velocity (u = U/Uc, v = V/Uc) , pressure

coefficient (p = (p-pO)/POUc 2  dimensionless temperature (T (- T

turbulent Grashof number (GrT = gPA8j 3 /e), turbulent Prandtl number

(Pr = fM/CH), and dimensionless time (t = TUc/D). AsT, CM and CH are,

respectively, the equivalent temperature rise, momentum and thermal

diifusivities for turbulent flow.

The physical boundary conditions are: Zero disturbance at large

distance from the heat source and non-slip and thermally insulated
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conditions at the ground surface (y - 0), and T - I at the source.

METHOD OF SOLUTION

Defining a stream function S such that:

xu- (6-5)

-xv Was

autoraatically "tiafias Equation (6-1). Subtracting the derivative of

Equation (6-3) with respect to x from the derivative of Equation (6-2)

with respect to y and making use of Equation (6-1) yields:

+u +v +.(6-6)

The new quantity Z, defined as:

-xZ W - / (6-7)

in Equation (6-6) is called the modified vorticity function.

Substituting Equation (6-5) into Equation (6-7) a relation between

the stream function and the modified vorticity function is obtained:

"x2Z a -' x 1 a 2 S (6-8)

The set of auxiliary conditions for the present problem becomes:

(a) t<0: u- v- T- S-Z - 0 for y O0.

(b) t 2 0:

u, v, T, S, Z 0 at large distances from the source. (6-9)

y 0:

ST 1 i xl <j D/2

x0 ixi >Di2
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u v S 0 (6-9)

x= 0:
av 8T

U =S =0

Z

The set of equations to be solved consists of (6-4), (6-6), (6-8) and

(6-5). These equations were solved numerically.

We seek steady state solutions for the problem posed above. In

general, two basically different numerical approaches may be considered:

the time-independent and the time-dependent formulations and solutions.

The former approach requires the simultaneous solution of the steady

state version of all the governing equations. TLis requires iterative

procedure which may be complex and time-consuming (13, 35, 36). The

latter approach is to introduce a disturbance (i.e., for our problem,

temperature at the source) into the initially undisturbed region of

interest at t 0. The subsequent changes in the region of interest

as the time increases will be described by the governing equations.

The steady state solution, if any, will be that obtained at large time.

Various types of numberical flow calculations (for example,

references 9, 34, 43, 46, 47, 48, 49, etc.) have shown that using a

time-dependent numerical scheme to obtain a steady state solution is

convenient. The time-dependent approach was used here.
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FINITE DIFFERENCE SCHEME

Grid System

For an axially symetric problem, calculations need be performed

only over a radial plane containing the symmetry axis. The square mesh

grid system for such numerical computation is described below:

y V

axis of symmetry
(or centerline)

- -- x ~upper boundary

Ax -Ay

. Ay I
outer

i-l - ,--i~,j) I boundary

i -j I+

source I
)ground surface,

"Q---,, Q,,,,v. A 7 / 7 77/ 7 .7 7 7 7 7 7 /7-0 x u
(radial

il i=m i - imax axis)

Henceforth, two subscripts (ij) will be attached to each dependent

variable (when necessary) for identification purposes. Thus T1,j refers

to a dimensionless temperature on the line x - 0.

For identifying the particular size of array of nodal points and

the relative size of the source, the following symbol will be used in

the future discussions:
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"imax x juax, 1-m"

Here the first part specifies the array size and the second part

means that the source occupies the region from i 1 to i - m, or source

size - (m-l)ax.

Difference Forms

The derivatives in the differential equations to be solved will all

be approximated by their difference analogs. Three difference forms

(forward, backward, and central) will be usedoeor the first derivatives

and a single form will be used for the second derivatives. To illustrate,

the space derivative for any uanction S(x, y, t) are given below:

(a) First derivatives

Forward difference

Backward difference
,~a (8 B.i1j - si-l. (W Si'j " Si'j-i

i~j- Ax dy i~i AY"

Central difference

Iaii Sj~l1 1  -12 as~ j~ = i'+l - ij-l
' J~ 2slx i '2

(b) Second derivatives

a_ S i+j,j -
2Si,i + Si-jj S7 ij Si,j+1 - sy + S'-

'W X y7, y
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Stability Criterion and the Difference Equations

Equations (6-4), (6-6), (6-8), and (6-5) are replaced by their

difference analogs. Wilkes (9) has investigated this system of equations

extensively for a free convection problem in a rectangular cavity with

heated vertical walls. He used a differencing scheme (50) such that,

for the convective terms on the left hand side of Equations (6-4) and

(6-6), the forward difference form was used when the coefficient velocity

was negative, and the backward difference form was used when the

coefficient velocity was positive. The central difference form was used

for all other terms. Based on a linear Fourier analysis the following

stability criterion may be derived:

at: x + IF_ + 2r &x 7F

Taking u as negative and v as positive, for illustrative purposes, the

difference forms of Equations (6-4) and (6-6) are written as follows:

U Ti+i'i - Ti! -i Ti.1 - Ti'-l
iT j ui ' Ax ,ij Ay

I Ti+lj " 2Ti-i + Ti-iL + Ti+l - Ti-l,(
+ 2+ 2x4x (6-11)

Ti'j+l - 2Ti'j + Ti. -I l
+ 6y2
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oz) " Zi+13j zij zij zi,-1
t/ ~ u i  - Ax "Ai, y

+Ti+lJ_ Ti-l~l I Zi+l,j " 2iii + Zi-laj
+ 2x+x (6-12)

Equation (6-8) may be written first as follows:

S - 2SL, j + S S - Si+,j i-l,j -i+l, i-l,1
Axz 2x~x

+ ,i~i ,2S iS ii 2

+ Ay i,j

In the above equation, S wao solved by an iterative procedure using

an over-relaxation scheme (51). Rearranging and introducing the over-

relaxation parameter W, and x = (i-l)ax, we have:

sn+l ,W x)2 Z' +- in
i,j Ax2i +  2(-) i+l,j

2 l+ (6-13)

A x2  n n n 1
+ + - S - + +- + (l-W) Sn

Here, the left hand side is the value of Si j from the most recent

iteration based on the established values of Sn ,j, etc. from the

previous iteration on the right hand side. Finally, from equation

(6-5):

I
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s i.,j+l ' - s iJ 1

2xAy
(6-14)

s +!j - si:1,1
vij 2xAx

Boundary Conditions

The governing differential equations for this problem are of the

elliptic type; the specification of conditions on all the boundaries

is required. We define a natural boundary as one at which appropriate

boundary conditions are obvious. The only natural and finite boundaries

in this problem are the ground surface and the axis of symmetry. The

others are at infinity. For numerical calculations, one is restricted

to perform calculations in a finite domain of a feasible number of nodal

points. To meet this restriction one may either map the semi-infinite

space y > 0, into a region defined between 0 and 1 or assume some

approximate artificial boundaries. Mathematically it is possible to

map the infinite domain into a finite one by a transformation such as

the following pair:

1C x 1

(6-15)C2 Y 1 .. L. 0yo, O'l

.l+C 2 y y Z2- 0-g o y<Y, 0 ,l.

where C1 and C2 are constants which determine respectively the manner

in which the x- and y-coordinate are to be shrunk.



65

Some attempts were made to use the transformed coordinate system as

described above. It was found that although the calculation seemed to

converge reasonably well and produce stationary results near the source,

it exhibited large oscillations at large distances from the source.

This is because of the singular behavior near = 1 and ' = 1 and the

associated unusually large truncation error due to the transformation

in these regions. Figure 34 is a plot of some numerical results using

the mapped coordinates for the case of GrT = 7.4 x 109 for the different

Rtages of calculations. Although the Grashof number used in this

example is too large to be realistic in the physical sense, the plotted

results do show the large oscillations near infinity. Furthermore, it

took about 50% more computing time than when an ordinary physical

coordinate system was used. For these reasons the physical coordinate

system was used and non-natural boundaries defined where necessary.

Some reasonable boundary conditions on these non-natural boundaries

are constructed. Boundary conditions, with discussions where appropriate

are given below:

(a) Source Plane (j=l, y=O)

Ti I = 1 for x5 D/2

(T1 i = 0 for x > D/2. Due to the inflow of air at ambient

i,1i

temperature, this condition is nearly equivalent to T = 0.

ui, i,l = 0
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Since no flow is crossing the source plane, y - 0 is a stream surface.

Thus wa can set:

S =l0.----- Si,l = 0•

By Equation (6-8):

Expand S near y = 0.

S - S, 1 + Ay AF +

i' i'l 6 itli,

fas + 4AY2 Io2Sl +4y 1& ~11,3 S1 Si + 2Ay+ 2 y 6 6 7

Noting that:

S 0 and (xu)i,l .- 0 ,

and eliminatin& a-Si from the above two expansions, we get:

(_2s) . 8Si,2 - si,3

Finally,

- 8Si 2 - Si,3

il 2x2Ay2

This expression (9) is accurate to the second order of Ay. This high

accuracy is desirable in order to minimize the inaccuracy in u and v

as calculated through Equation (6-5).

(b) Axis of Symmetry (i-l, x-0)

Based on the symmetry of the flow field and the requirement

that field variables and their gradients be everywhere continuous,
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the following conditions prevail:

Ulj Slj = )1j (,) .

From Equation (6-7):

z (I ) I (.2 by l'Hospital's rule.

(c) Upper Boundary (j=jW, y=ym4x)

Above the source, the variation of the flow variables decreases

as the distance increases. Therefore, at some distance Ymax above the

source, we choose:

(T, S, Z)i,jmax = (T, S, Z)i,jmax..

As y increases, the flow enters into the convection plume region where

the governing differential equations are of the parabolic type (4,7,38,52).

Since the downstream conditions in a parabolic system only weakly affect

the upstream region where the flow is described by elliptic type

differential equations, we assume that this specification is satisfactory

for the present problem. The validity of these conditions as indicated

by numerical experiments will be discussed at a later time.

(d) Outer Boundary (i=imax, x=Xmax)

Experience and analysis show that the influence of a heat

source on the ambient region diminishes raiidly in an upstream direction.

Therefore, for some suitably chosen value of imax, the location of the

outer boundary across which the cold ambient air flows in, one may

assign:
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Timx, j 0.

This condition simply means that the temperature reaches the ambient

value on the outer boundary.

We have so far specified zero temperature gradients on the other

three boundaries (except at the source). In a steady flow problem, the

velocity field is established and the energy equation becomes linear.

The specification of zero temperature gradient on this boundary would

result in a trivial solution of T - 1 everywhere inside the boundaries.

Furthermore, the temperature on the outer boundary can be higher than

that of the ambient only by heat diffusion in an upstream direction.

IEHD)1/2
The characteristic diffusion length is proportional to -. For

our problem, this diffusion length is on the order of 10-1 foot.

Therefore, at a distance not far from the plate, the air temperature

would be very near the ambient value. Thus the choice of Timax,j - 0

at sufficiently large value of imax (e.g., 1.5D) is well justified.

For velocity conditions at this boundary, we choose:

Simax,j = Simax-lj

zimax,j -, (j # 0).

The first of these implies v - 0 and xu = constant from Equations (6-5)

and (6-1). Since the largest velocity change takes place within Lhe

boundary layer near the ground surface, the remaining portion of the

secondary flow region at this boundary may be considered approximately

irrotational. Experience in numerical calculations shows that the
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specification of Z imax,j is insensitive to the solution.

Following the basic scheme discussed in (a) above, the boundary

values for the condition of vanishing first derivative were established

by 3-point extrapolation scheme (53). Considering T1, j for example, a

Taylo-1 series expansion gives:

ax ,j +, A1 OxTl~
T 21 xT 1.1 2 g4 Ii+ 3

3,j 6 2

T4, j  Tl1 j + 3Ax + 2 + 6 - ----

l, + 2  l,j 6 ),j

Since = , the above equations may be solved simultaneously

to give:

T1,j - (18T2,j - 9T3,j + 2T4,j)/II.

Since the profiles of interest have no rapid changes in slope along

(lj), this method was found to be very satisfactory. Similarly,

may be obtained for specifying Zl,. Since v is a quantity

derived from the stream function S which in turn is obtained by solving

Equation (6-8) from the known values of Z, it is more accurate to

Ii compute Z I,j directly by extrapolation from Z Z3,j, and Z 4, j  This

scheme was used and was found to be both convenient and satisfactory.

It is realized that the conditions imposed on the outer and upper

boundaries are somewhat artificial. Further justifications will be given

when the domain of calculations is discussed.
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Calculation Procedure

The governing equations were programed in FORTRAN IV computer

language ,tnd the calculations were done on an IBM 7094 digital computer.

A block diagram describing the calculation procedure with discussions

where necessary is given in Appendix F. The computer program listing

is given in Appendix G.

VALIDATING OF NUMERICAL-MHOD

The Diffusion Eauation Limit

We attempt to validate the numerical results by going through a

limiting procedure. As a preliminary test, the velocity field in the

computer program was suppressed so that the numerical results would

correspond to the solution for a diffusion problem with the same

boundary conditions. This procedure was used also bp Kane and Yang (36)

in a similar calculation. An exact solution for this problem in closed

form is given below (54):

T 2 $-lr 2 "1
x-1)z + y + 1(~) +

Three numerical results are presented in Figure 35. It is seen that the

numerical results tend toward the exact solution as the domain of

calculation is extended. The discrepancy between numerical and exact

results is apparently due to the artificial boundary condition on the

outer boundary. This is further illustrated for a case in which the

lower portion of the outer boundary is insulated. The results are also

shown in Figure 35. With respect to the thermal boundary condition,
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the non-flow example is a severe test. An inflow of air at ambient

temperature tends to make the condition Timaxj - 0 much more realistic.

As an additional test of the computer program, solutions were

obtained for various specified degrees of flow activity. As discussed

earlier, GrT is the governing parameter in this problem. The flow

velocities are large for large GrT. The numerical results for two

Grashof numbers (102 and 103) are presented in Figure 36. As must be

the case, the solution of the diffusion equation (the case of Gr--0)

is again approached as the Grashof number decreases.* At large GrT, the

region where the temperature differs significantly from the ambient

value is squeezed toward the centerline. This fact is in agreement

with experimental evidence (Chapter IV) and theory (5,38). It is also

indicative of the unimportance of the temperature specification on the

outer boundary as the Grashof number increases. We are interested in

the Grashof number in the range around 105.

Effects of the Domain of Calculation

The required computing time for obtaining a converged solution for

a given problem depends on the size of the array of mesh points.

Numerical experiments were carried out to test the minimum array size

Kane and Yang (36) studied che laminar free convection problem
due to a heated horizontal disk in a full space for very small
Gr (<100) and found that their solutions tend to coincide with
the diffusion equation solution as Gr decreases, as is true
with the present solution. Direct comparison of these results
was not made due to difference in geometrical configurations.
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which would produce reasonable results for the region of interest.

Calculations were made for the case of GrT - 10 with a source radius

of 4Ax. Figures 37 and 38 show, respectively, the effects of vertical

extent and horizontal extent of calculation on the numerical results.

It only the region defined by x : 1, y 5 i is of concern, these figures

show no appreciable difference on the numerical renults when the source

radius is 4Ax and array size is increased beyond 15 x 17. For this

reason the "15 x 17, 1-5" (see p. 61 for explanation of this identification)

array was used for further calculations.

Effect of Mesh Spacing

The truncation error for the present system of equations is on the

order of KLAt + K2 Ax where Kl and 12 are positive constants depending

on the dependent variables T and Z. By making either At or Ax or both

small the accuracy of the computed results may be improved. Since we

are interested in the steady state solution, the above dependence shows

that reducing Ax ia au effoelva method of improving accuracy. A brief

investigation of the effects of Ax on the numerical results is described

below.

Calculations were made for GrT - l04 and 105 by subdividing the

mesh spacing in steps; the converged solution for the "15 x 17, 1-5"

grid system was obtained first. This first solution was then used as

the input for a new system with a mesh spacing equal to one-half that

of the first one, etc. In this fashion, the mesh spacing could be
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reduced to a reasonably small value with a reasonable amount of computing

time. A summary of the computing time for various grid systems is given

in Appendix F.

Figure 39 shows the centerline temperature distribution for GrT = 105

for three values of Ax (3", 1.5", 0.75"). A nearly linear variation

for T with respect to Ax is shown in this figure. The line for Ax = 0

was obtained by constructing a smooth curve for T(y) versus Ax on a

sheet of graph paper and reading the intersecting point of this curve

and the line Ax - 0.

Heat Transfer

The mathematical formulation for our numerical calculations is

essentially that for a laminar flow case. Therefore, it is well to use

selected laminar flow results to further check the correctness of our

numerical scheme. Letting At be the difference between the mean plate

temperature and that of the ambient, we have:

hAs = -k

where h, k, a and Y are, respectively, the average heat transfer

coefficient, thermal conductivity, temperature and distance from the

source surface. If we define, as before, T = (0 - y)/Ae, Y Y/D and

substituting in the above expression, we get:

hA$ - -k K.8 T=-k " Ty
Dy DY

or,

hD
k -Ty
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where Ty is the dimensionless mean temperature gradient at the source

surface. Thus, the magnitude of the dimensionless mean temperature

gradient is actually the Nusselt number. Free convection heat transfer

is usually correlated in the following form:

Nu - CGrn or -Ty - CGru

For laminar flow n - 0.25 (e.g., reference 27). This will be used as

our basis for comparison.

Calculations were made for a range of GrT using the "15 x 17, 1-5"

grid system. The variation of Ty with GrT is shown in Figure 40. Since

large GrT also means large heat transfer, the value of Ty as shown in

Figure 40 increases with GrT as expected but the value of n was found

to be 0.11. The effect of mesh spacing on Ty is shown in Figure 41.

It is clear that there is an almost linear variation of with respect

to Ax. If the values of (TY)Ax." (see Figure 41) are used, n - 0.24,

C - 0.51 may be calculated. This value of n agrees well with values

reported in the literature. No value of C for a horizontal plate

(C - 0.36 for vertical plate) has been reported in the lite;ature, but

the present result appears to be good to within a proportionality

constant. For turbulent free convection n - 1/3, therefore, some

discrepancy between numerical results and experimental data would be

expected.
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NUMERICAL RESULTS

Velocity and Temperature Profiles

Based on the numerical results for three mesh spacings and the

graphical extrapolation method described above, the temperature and

velocity fields for GrT - 104 and 105 extrapolated to Ax - 0 were

obtained. These results are shown in Figures 42 and 43. As expected,

the indraft velocity is large near the ground level and the maximum

value of -u occurs always within the plate radius. The outer edges of

the velocity and temperature profiles are more constricted toward the

centerline for large GrT than small GrT.

Indraft Calculations in the Region near the Ground (1< j <2)

The indraft velocity near the ground is qn2 of the most important

features of the flow field. Measurements show that the indraft is

largest near the ground and decreases rapidly as the distance from the

ground increases (Figure 29). Due to this boundary layer behavior

near the ground, no feasible mesh spacing for numerical calculations

(e.g., D/16) is fine enough for predicting the detail in this region.

In order to obtain a complete flow field description, the present

method must be supplemented by appropriate auxiliary calculations.

If we use the numerical results obtained with a reasonably coarse

mesh spacing as an indication of the outer flow field, this indraft

velocity may be calculated approximately by an integral method.

Here we refer to the condition that only the velocity gradient
normal to the plate is significant.
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Consider the control volume described below:

Y (axial)

V

AYU

so.,e round

-0 ... /////,/ X (radial)

By the principle of conservation of energy and using the perfect
P

gas law P1 Q a constant, the following relation in dimensionless

form may be obtained for the control volume:*

o udyi=Q 
(6-16)

where
Q . jrvxdx - 8rcP

and q, r, Cp, P and I are, respectively, the average heat flux, dimen-

sionless radius (r - R/D), specific heat at constant pressure, pressure

and gas constant. In this equation Q may be regarded as a known quantity

wThe conductive heat transfer term is neglected due to the small

local temperature gradients. The kinetic and potential energy
terms are very small and are also neglected.
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in which the integral term may be evaluated from numerical results and

the last term may be obtained from experimental heat transfer data.

The function u(y) is found to be such that the equality of Equation

(6-16) holds.

The numerical results obtained with 4x extrapolated to zero will

be used in the calculations. The function u(y) for the interval

0 : y < Ay will be determined based zn as much known information as

possible. From numerical results, the end values u rnl and um,2 are

fixed. For a better approximation, 0YULP2 is also to be satisfied.Y jm,2

This may be computed from urMnj in a fashion similar to that given in

the discussion of boundary conditions. The resulting equation is:

Il

: -YYLm,2 - M( 2 - l8um3 + 9um,4 -2uM5)

In the secondary flow region, because the velocities are small and the

flow is in a direction more or less parallel to the plate surface, we

assume that the boundary layer equation for flows with negligible pressure

gradient is applicable in the neighborhood of (m,l). This leads to the

requirement of vanishing (reference 45). Considering a fourth

order polynomial in y with vanishing u and its second derivative at

y = 0, the general form of the polynomial may be written as:

u(y) = by + dy3 t ey4 . (6-17)

The coefficients b, d, and e may be determined from the known values

of Um,2, au ,and Q. An equation similar to (6-16) may be obtained
152 I m, 2

from the principle of conservation of mass. This may be used to chec

the results of Equation (6-16).
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The calculated results for the case of 0, 520OF is shown in

Figure 44. A discussion will be given at the end of Chapter VII.
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Equations (7-1) and (7-2) may then be used to solve for AST and am in

terms Qf' rT, IT( .andiq. oThewfolloWinSg1 alationoe,afnobtained:

SP r ~ 2  11 FGrTl 1/3 (7-3)

0 n gAPr q D 4  1/3(74
M .(PCP,,~ (-TY)GrTJ I7

In the numerical calculations, TI was obtained as a function of GrT

(Figure 40). Equations (7-3) and (7-4) show that if q is given, AST

and #M become functions only of GrT.

COMAISONS

Substituting the experimental value of q into Equation (7-3), the

values of AST, and hence Uc may be calculated for a number of GrTls.

The A4 and Uc thus obtained will be used for converting the dimensionless

numerical results into physical quantities. In this manner, the experi-

mental and numerical centerline temperatures were first compared to

obtain the suitable values of GrT. Figure 17 shows that the numberical

results for GrT - 40000 and 25000 could fit the experimental data

reasonably well for sp - 520°F and 410 0F, respectively. The values of

Ty, ADT, Uc and eM corresponding to these GrTIs are tabulated in Table 9.

It is seen that the experimental and numerical values of e are in good

agreement.



VII. COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS

GENERAL DISCUSSIONS

In the discussion in the early chapters, we have shown that, in

the region sufficiently close to the plate surface (< 0.02", say), the

local air temperature can be calculated based on molecular conduction

(Figures 21 and 22). Away from this thia region, the flow is quite

turbulent (Figure 4) and the flow field, therefore, cannc be suitably

described by the molecular properties (i.e., Gr). It is not a simple

task to attempt to describe the detailed flow behavior in the neighbor-

hood of the source by a single overall transport formulation.

In order to gain some insight to the basic features of the

numerical results using the turbulent Grashof number as the governing

parameter, a comparison is made between the experimental data and the

numerical results presented in Chapters IV, V and VI, respectively.

The turbulent Grashof number is defined as:

GrT gaTD 
(7-1)

where AOT and tM are, respectively, the temperature difference and eddy

diffusivity characterizing the flow field. The mean heat flux may be

expressed in terms of a mean temperature gradient Ty through the

definition of a thermal diffusivity as follows:

q = (pC C T (7-2)
P~o YP oo Pr D y(72
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Table 9. Comparisons of experimental & numerical results.

Experimental Data Numerical Results (Ax-*0)

lp q i-T AftUr#

OF B/hr-ft 2  ft 2 /sec rT -Ty 0F fps ft 2 /sec

520 80 .031* 40000 6.27 86 3.2 .0324

410 560 --- 25000 5.64 61 2.8 .0348
-, 1 ,, I ,,

Average value of #HPr in Table 3.

Having established the values of AST, the comparisons between the

horizontal temperature profiles and updraft velocities are then compared.

These are shown in Figures 18, 19 and 45. The numerical results show,

in general, more gradual profiles than do the experimental data. Only

qualitative agreement is seen. This is due to the non-realistic constant

eddy diffusivity model used in the numerical calculations. Numerical

results given in Figures 18 and 19 show that the flow and temperature

fields are more constricted about the centerline for larger GrT.

In reality, the turbulence level decreases as the radius and the

distance from the plate increases. At some distance outside the primary

flow region, the flow field (the secondary flow due to entrainment) is

laminar, and the description of the flow behavior in this region would

be determined by the molecular ptoperties (i.e., by Gr). There must

exist some sort of transition of the governing transport mechanisms. It

appears possible to improve the numerical results by incorporating a

spatial variation of GrT (i.e., the eddy diffusivity) in the numerical

A
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formulation such that GrT would increase with the radius and the eleva-

tion until it is approached to the ambient value Gr. This, however,

would require an extensive numerical experimentation. Because of the

large amount of computer time which would be required, this procedure

was not pursued.

Figure 44 shows the calclated indraft profile for the case p P

5200F. The results show that the calculated indraft velocity is

consistently larger than the experimental data. The percentage

discrepancy is large especially at large elevations ( -90Z). Since all

measurements of indraft velocity were in the laminar, secondary flow

region, it is conceivable that this discrepancy was due to the use of

too large a value of Uc for nondimensionalization, or it may have been

due to the inability of describing the whole flow field by means of a

single transport mechanism.

I



VIII. CONCLUSIONS

Based on the findings of this research the following conclusions are

drawn for the turbulent free convection field above a heated, horizontal,

circular flat plate:

EXPERIMENTAL

1. The turbulence in the primary flow region (Figure 4) is

characterized by low frequency (-10 cps) and large amplitude (-1i fps)

turbulent fluctuations. The fluctuating velocities are the largest on

the centerline and decay as the radius increases.

2. Because of this large turbulence, the conventional hot-wire

technique for turbulence measurements on linearized theory was impossible

to apply.

3. There exists a thermal boundary layer, within approximately

0.02" of the plate surface, in which the major part of the overall

temperature drop takes place. The temperature distribution in this

region may be calculated based on molecular conduction.

4. The vertical temperature gradient and hence the local heat

flux at the plate surface increases significantly with the radius. Data

show that the temperature gradient at plate edge is approximately twice

the value at centerline.

5. The region of significant deviation from ambient temperature and

velocity is constricted toward the centerline.
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6. The induced indraft is large at low elevation (--0.5 fps) and is

largest within an inch of the ground. This indraft is on the same order

of magnitude as Uc (a characteristic velocity directly obtainable from

a dynamic force balance).

7. Hot-wire method has been developed which is suitable for this

type of velocity and turbulence measurements when the information contained

in the various moments of the hot-wire voltage output is used. Details

of the data can be more clearly shown as the order of the moment increases,

being a more sensitive measure of the phenomena. However, due to the

amplification and accumulation of errors during the process of taking

higher moments, the proper interpretation of the high moment data may be

a difficult task (e.g., the problem of separating signal voltage and

background noise may be an analogy).

8. Numerical simulation of the the .hot-wire voltage output is

shown to be a useful tool for the actual hot-wire data reduction.

9. The eddy diffusivity can be estimated either from the energy

2
equation using basically temperature data or from the product our of the

turbulence velocity and the characteristic time data. The agreement of

available data is within 15% for low elevation points and up to 604 for

higher elevations.

N ERICAL CALCULATIONS

1. A numerical calculation method using a time advancing, explicit

differencing scheme for computing essentially the laminar free convection
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field above a heated, horizontal disk has been developed and validated.

The calculated temperature gradient at the plate surface increases with

the radius (also an observed experimental fact). The numerical heat

transfer results obtained agree with experimental heat transfer correla-

tion (NucCRa1 /4) to within 4% of the value of the exponent.

2. The centerline temperature data were compared with numerical

results and the best fit was used to establish the appropriate values

of GrT and 40T, the turbulent Grashof number and temperature rise

characterizing the flow. The match between calculation and experimental

data is most successful when GrT is on the order of 105 (Grashof number

Gr based on molecular viscosity is on the order of 1010 for this work).

3. For describing the gross behavior of the flow field, the intense

variation of eddy diffusivity in the boundary layer region is neglected

by the specification of a characteristic temperature rise AST at the

plate surface. This temperature rise is determined also on the basis of

plate heat flux and eddy diffusivity. Only qualitative agreement can be

obtained between the numerical and the experimental data. Clearly, the

constant eddy diffusivity model is not suitable for describing the

complete flow field.
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(a) overall arrangemnent

(b) flot-wire traversing mechanism

Figure 1. Experimental apparatus
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#50 bottom drilled holes,
#24 A.W.G, Cu-corstantan
thermocouple, weldedaluminum alloy junction first inserted2024T351 in place then filledQQ A 25014 the void space with
liquid aluminum.

Typical Thermocouple
Installation
actual size
A-A

This side
Sfacing down

Fin installation

A A

'IT
11 4- (typ.)

'

= 24" dia.- I

i Figure 6. Thermocouple installation in the heated aluminum plate,
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Figure 7. Temperature distribution in the heated alvainuuip~ate.
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Figure 8. Heater performance.
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Standard Conditions:
3.01 P - 30" Hs abo.

T - 700F

2.5-

U-tube manometer
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01.5

0
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inch water for manometer, or Manostat flow mater reading

F/igure 11. Tunnel velocity caltbzetioas.
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68 E2 . 34.42+28.74W 0 5  .37
113 = 26.43+23.23W 0 .5  .24

80 138 E2 = 20.67+19.73W 0 5  .28

* blowing upward

70 - 0 blowing downward

- least square fit

N 
/60 

-

0

50
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400

0

30 0

(D 0 *Based on blowing upward

data points for WO 5 >0.5.

20 II
0 0.5 1.0 1.5 2.0

0.5 1/2
W " , (ft/sec)

Figure 12. Hot-wire calibrations (0.001" dia. x 0.5" long
platinum wire, pobitioned horizontally, estimated
wire temperature = 3001F).
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Heathkit

hp 204 PS-4 d.c. hp 427A
oscillator power supply multimeter

I setup for on-
I line system
I qcalibration

I

TSI Modal 1010 I
Hot-wire auemo- hot-wire switch
meter probe

bridge voltage ! Brush
output ,recorder

_______05B_ " ntime const (6 channel)
TSI 1005B -1 min (typ.)
linearizer T-

Ckt #1 output E2  E2

Ckt # output

linearizer T d.c. amp.
Ckt #1 output: W

2 "  -

Figure 15. Hot-wire data recording setup -schematic.
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Figure 16. Thermocouple and hot wire probe arrangement.



102

48 -4 Experimental data:*

q, Btu/hr-ft2  sp, OF

800 520

42 560 410

Numerical reralts:

e GrT - 4.0xlO4

36 ' C 10 2.5x104

Length of horizontal lines reDresent
*1 standard deviation. Solid line
curves connect all experimental data
points.

30-

U

> 24
0
0
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0I I I

60 80 100 120 140 160

Mean air temperature, OF

Figure 17. Centerline temperature profiles.
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100

+ 0.5" wire
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0
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~T +

0
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Frequency, Hz

Figure 23. Comparison of wave analyzer outputs for
different wire l~tngths (0 "520 F, X -6"13
Y " ,wire horizontal).
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7 0 14OF

7 0 150.4oF

-7 0 =1620F
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Figure 24. Hot-wire bridge voltage output (X = 0, p = 520 0F),
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Figure 25. Hot-wire bridge voltage output (Y =6", 9 P 5200F).
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Figure 27. Calibrations of hot-wire data taking system using d.c.
plus a 60 Hz a.c. as input.
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Figur~e 34. Numerical reslluts at various stages of ca.lculati$ons for a
transformd coordinate system(grid system - 17 x 170 1-f",C2 = 2 4, GrT 7.43 x 109 , Pr 0.708).
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Figure 37. Effects of domain of calculations on the numerical results -
verticel extent (GrT = 104, Pr = 0.708).
(Lines shown are for grid systems: 17 x 17, 1-5; 17 x 21, 1-5;17 x 25, 1-5. 0 shows the deviation of the results of a
17 x 13, 1-5 system from the lines).
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Note. All calculations are mde using a
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Appendix A

MOTIVATION OF RESEARCH

The origin of this project was an attempt to study the gross flow
behavior '.n the vicinity of large unconfined fires. This problem has

been the subject of several investigations during the past decade (29,

30, 31, 37). Experimental observations suggest that, in general, the

physicAl behavior of a large fire may be described in terms of the four

zones shown below (56):

axis of fire plum zone

secondary flow

zone (entrained flow)

I I
j1 -- cor. zone

surface interaction

base of fir- zone
ground surface fie/'zn

1. Plume Zone

Above the fire there is a rising current of heated gases. The zone

where this current is the dominant feature is called the fire
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convection plume. Entrainment of ambient air and, therefore, cooling

of the rising coluum take place. The flow is fully turbulent. Fire

whirls may sometimes be present. The affected cross section of the

surrounding air gradually widens along the path of the ascending

mass of the hot gases until its momentum is balanced by entrained

ambient air. The flow behavior in the plume zone resembles that of

a free jet. The boundary layer assumptions are valid and under some

circumstances similarity solutions may be obtained. Mathematical and

experimental investigations of the plume have been fvuitful (e.g.,

references 4, 5, 6, 7, 8, 52).

2. Secondary Flow Zone

This is the "upstream" region of cold air outside the fire. In an

otherwise still ambient atmosphere, the fluid motion in this zone

is due solely to the pressure defect resulting from the buoyancy of

the hot ascending gases. The entrainment and the associated indraft

are largest at altitudes relatively near the base of the fire. This

indraft is substantial for large fires; it tends to prevent the

outward lateral propagation of the fire. Thus when the indraft is

large enough all the burning may be confined in a relatively stationary

region. This is one reason why the ground indraft is so important

in fire behavior.

3. Surface Interaction Zone

This is the region of fuel supplies such as buildings, trees, etc.

Major destructive burning and the release of gaseous fuels take place
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in this zone. Inside this zone are intricate interactions of heat

and mass transfer, chemical reactions, and air entrainment. In the

start-up phase of a mass fire, ignition, spreading and the interactions

between individual small fires occur in this zone. The burning

process in this region is usually incomplete. In a large area fire,

this zone, although the source of energy supply, is usually confined

in a region very close to the ground level and is very small compared

with that of the whole region which is significantly influenced by

the fire (Reference 29). It is believed that the detailed physico-

chemical phenomena associated with combuation in this region are

only local effects, and that the large scale convective motion in a,

fire is governed primarily by the heat release. Thus, for modeling

purposes, we assume that the detailed knowledge of phenomena in this

zone is not essential on understanding of the gross flow behavior of

large fires.

4. Core Zone

Near the base of the fire is a region linking the surface interaction

zone, the secondary flow of fresh air and the convection plume above.

Here the pressure defect driving the low elevation secondary flow is

developed. The winds, temperature, and oxygen concentration experi-

enced by the surface interaction zone are determined by the core

phenomena. The general understanding of the physics in this zone is

essential to the studying of fire flow fields. The flow field in this

zone cannot be described mathematically by the boundary layer type
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formulation as used for convection plume calculations (4,5,6,7,8,52).

This aspect is demonstrated by Stewartson (32) with an example of

the natural convection above a heated horizontal plate.

The fire problems studied to date have been concerned primarily with

the convection plume well above the fire. Solutions are based on free

boundary layer approximations and the assumptions of small density

changes and similarity profiles. Results of these calculations are in

good agreement with available experimental data (4,5,7,52). Experimental

investigations of the behavior of large fires have been carried out by

personnel of Pacific Southwest Forest and Range Experiment Station.

Wood piles or simulated houses covering areas up to forty acres were

burned. Although numerous data were collected, only a very limited

amount of fire flow field data have so far been made available to the

public (29).

Due to the complexity of the details of the fire problem and the

prohibitive cost of field experiments, it is desirable to utilize

mathematical models to the greatest extent feasible. A logical start

is to try for an approximate description of the large scale flow features

with a simple mathematical model, and to then attempt to fill the gaps

by adjustment to agree with field data as available.

As discussed earlier, the flow field generated by a fire is driven

primarily by free convection effects resulting from the heating of the

air in the proximity of the fire. We regard the combustion processes

in the surface interaction zone as local in nature. We then aisume
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further that the heat release from the fire is the dominant factor which

govern the gross behavior of the fire flow field so that the fact of

combustion may be modeled by prescribed temperature or heat flux distri-

bution at the base of the fire.

A limiting case of this is the free convection field produced by a

prescribed uniform heat source. Hopefully, this will qualitatively

describe the gross features of the flow induced by a large area fire and

will provide a starting point for the fluid mechanical study of a fire-

like flow field. Once the problems associated with this fluid mechanical

model are overcome, as a second step, a more realistic model including

fuel and air mixing, followed by gas phase combustion, could be developed,

for example, by simulated spatial distribution of sources of heat and

mASS.

For mathematical simplicity, the free convection due to a horizontal

heated, circular surface flush with the ground 2urface in an otherwise

still ambient is considered as the model. This model provides a flow

field which describes the basic features of a large fire as discussed

earlier in this appendix.

The free convection model has also been considered as an approach

to the scaling of the indraft velocity due to an area fire (31,37,57).

By a dimensional analysis, Byram (57) has shown that preserving the

Grashof number between model and prototype is impossible for any useful

length scaling ratio. Fortunately, at the expected magnitude of Gr in

a fire ( -1015), the flow is fully turbulent and molecular transport



144

phenomena have been postulated unimportant. Thus if Gr can be neglected,

for $eoretrically similar models, the heat flux and indraft velocity are

proportiondi to the square-root of the length scale. The validity of this

concept has been demonstrated experimentally by Lee (31) as conclusively

as possible with the limited data available (30).
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ENERGY BALANCE

The calculations for the energy balance terms suunarized in Table 1

are discussed in this appendix. Three types of energy loss are considered

here:

a. Radiative losses from the aluminum plate, the asbestos ring,

and the floor.

b. Convective losses from the asbestos ring and the floor.

c. Conductive losses through the insulation jacket and the floor.

As an example, the calculations for Run No. 1 are described below:

1. Radiative Losses

The following equation was used for all radiative loss calculations:

Qr - OvA(0 4 _ 00) Btu/hr

where 0 (-5370R), e(-.1714 x 10-8 Btu/hr-ft2 -R4), e, and A are,

respectively, the ambient temperature, Stefan-Boltzmann constant,

emissivity, and heat transfer area.

2. Convective Losses

From the experimental correlation Nu - 0.141 Ral/ 3 (Reference 26)

and the definition of qc = hAe, we estimate:

qc 0.141k r -1/3 M
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Using the prcoperty values for air at a (58), the above expression

may be simplified to:

Qc - 0.2434A 1.33 A Btu/hr.

The calculated energy losses for the above two items are sumarized

below:

Part Name Aluminum Plate Asbestos Ring Floor

9 .05 .96 .91

A, ft2  3.18 .84 1.6

0, OR 979 740 597

Q., Btu/hr 229 294 110

Q., Btu/hr --- 231 86

3. Conductive Losses

These losses are from the insulation jacket and partly from the floor.

The temperature at two points along various heat transfer paths were

measured (see Figure 2 for thermocouple locations). The total heat

transfer surface was divided into several parts. For each of these

surfaces, an average temperature drop wasebtaied-from the:;sasured

temperature data. Since the conduction surface area, the length of

path, and the thermal conductivity (No. 4 vermiculite, see footnote

on p. 159) are known, the heat transfer was calculated by:

Q - -k A A Btu/hr.AY

The calculated total conductive loss through the insulation jacket

was 347 Btu/hr and the conductive loss through the floor was 45 Btu/hr.
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TEMPERATURE CORRECTIONS

The temperature indicated by the thermocouple is corrected for

losses due to radiation and conduction. We refer to the detailed

configuration of the thermocouple give in Figure 20.

Heat is transferred to the exposed surface (0.4' long) of the

thermocouple wire by convection and lost from the same surface by

radiation. Heat is also lost by conduction through the portion of the

thermocouple wire in the stainless steel tubing. For thermal equilibrium,

we require that qconv = qcond + qrad; this gives:

k (t 00)L A4 14
A convh(a - =t

)  Acondki (et - e )/L + Arad 0,('t cc

where

Aconv Arad = dJ(JD) + iD2 = 7.29 x 10 "5 ft2

Acond = rd2/4 = 2.16 x 10 - 7 ft 2

kwire - kcopper + kconstantan = 218 + 12.8 231 Btu/hr-ft-R

u emissivity = 0.8

a- .1714 x 10-8 Btu/hr-ft
2-R4

00- ambient temperature a 537 0R

Pa = true mean temperature of the air, OR

it - mean temperature indicated by thermocouple output, OR

L - length of conduction path - 0.25 ft (see Figure 20).
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Substituting the appropriate values into the above equation and

rearranging, we get:

h - - 2 7 5  I + (lO-1)

where the first term on the right hand side of the equation is the

correction due to conduction loss in OF and the last term is the correction

due to radiation loss in OF.

Consider the heat transfer surface in the exposed portion of the

thermocouple as composed of a sphere of diameter D (for the bead) and a

circular cylinder of diamter d (for the wire); an equivalent wire

diameter weighted by surface area was used for heat transfer coefficient

calculations.

d e + wDZ - 0.0142".

At an assumed air temperature (e.g., that calculated based on conduction

only), the properties of air may be found in Appendix III of Reference

58), with the local mean velocity from velocity measurements, the local

Reynolds number may be calculated. From heat transfer correlation (e.g.,

Reference 58, Figure 7-3), the heat transfer coefficient h may be

calculated. The temperature corrections thus obtained are shown in

Figures 21 and 22. A numerical example is given below.

Consider the point X - 0, Y a 0.02" for Run 1 (Figure 21). The

local mean velocity was obtained from interpolation between the points
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Y a 0 and 3". Qs was estimated to be 4580F. The following additional

data were used:

V = 0.009 ft/sec

st - 7820R

k - .0224 Btu/hr-ft-F

0 - 4.3 x 10-4 ft2/sec

Re - Vde/P - 0.024

since this Reynolds number is so small (forced convection data unavailable),

the actual heat transfer is in the free convection regime. Setting * -

PrGr - PrRe2 and using Figure 7-3, Reference (58), we get:

Nu = 0.51

h - Nu(k/de) - 9.5 Btu/hr-ft2-F.

Substituting the appropriate values into Equation (C-1), we get:

M - 1160F

Finally,

a i + At - 43801

Error Analysis

In the above calculation procedure, we need to estimate the values

of 0a and V for computing the heat transfer coefficient h. From the

dependence of h on the governing parameters, it can be shown that h

depends only weakly on the value of *a and more strongly on V. Experi-

mental heat transfer correlation (Reference 58) shows that the c ange

of Nu is very gradual in the range of our interest (RaslO'4). Spot



150

checking of the results were made and it was found that an error of 20°F

On #a would result 1°F and a 20 error of V would result a 50F change in

the temperature corrections. Since 200F is larger than the possible

variation in our temperature measurements and,20% error in V is a

reasonable upper bound, the estimated error in our temperature corrections

would be less than 60F.

The source of error during data taking was basically due to the

drifting of the recorder chart paper, (1 mm is a quite noticeable amount).

This drift would represent a maximum possible error of 0.1 mv in the

thermocouple output, or an error of -50F. Consequently, the total

possible error in our temperature measurements would be approximately

110F. Since the main contribution of correction is due to radiation loss

which increases rapidly with the wire temperature, it is clear that the

amount of correction and hence the associated error will be greatly

reduced when the thermocouple gets away from the plate.
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DflIVATION 0F NQUATIOM (5-4)

W, (Z2-A')' 1(2A + (A.A' 1 2 a (12.mA)2 + 2(A-A')(3j2.A)4(A-Ao)2

Multiplying by C, and rearranging the Ifist of Iqution (5-4) will result.

W# (E2-A')4 - 2A + UA

(2 -A)4 + 4(A-A')(1g2 A)3 + 6(A-A')2j

+ 4(A-A')3(I-A) + (A-A') 4

Since,

( *_A (E_- + (iP-A) 3

- (E2 -E2) 3 + 3(E2-A)(E2-E2)2 + 3(P.-A)2(g2_g!) + (IA

n (E2-T)3 _ (!.)f2A) 1- !AI

-(E2-EF)3 + 3(12 (E2-A) (lA2 + (& _A)3

= (E2.E2)3 + 3(E7.A)(E2-A)2 3

We have,

;7 (E-~ 4(A-A'%/27-C3 + l2(A-A')(Ei7-A)(EZ A) $A..(--)

+ 6(A.At)2i!' + 4(A-A')3(E2_A) + (A-A') 4 . (D-1)

Multiplying by C 2 and neglecting the term 4C1 (A-A')(1- 2 3  the &,cond

of Equation (5-4) will result.
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This neglected term is not zero in general but is very small relative

to the retained terms for an assumed probability density of E. To

illustrate, let this distribution be Gaussian,

P(E) "exp [_A2(E.E)2]

where ! is the average of E; A2 - (2E 2)"I and rE  variance of E.

Letting u - x(E-1) we have

/_.-7iW . z PdE - t.l + ...T e'Udum! +- zA

(E2 c3 (2E2-)3PdE

=U + 2 - 2 1 3eU du-C L.[(-1 )2 fr27 .143ud

to en. ~ u2 + 2 J u - 1/2]3 e-u2 du

1 (1 + 6A 2 i 2 )

or,

(E2--)3 _ 8 aE4 (1 + 3E2 )

From the data given in Table 6, the value of (E2-E2)3 and hence the

neglected term 4C12C2 (E2-E)
3 can be calculated. Calculations show that

this term is on the order of 10 - 3 - 10- 5 and its adjacent terms in

Equation (D-l) are on the order of 1. Therefore, the neglect of this

term does not introduce apprecialbe error and is well justified.
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RANDOM VARIABLE ALGORITHMS -

NUMERICAL SIMULATION OF HOT-WIRE DATA

Two basic schemes for obtaining the random variables for hot-wire

data simulation are described in this appendix. The parameters to be

specified consist of the standard deviation of the fluctuations and I
correlation coefficients as defined in Equations (5-8) and (5-9). In

this procedure, a set of four random numbers are generated for computing

the normalized fluctuating velocities as defined in Equation (5-7). The

computation involved is such that the fluctuating velocities are consistent

with the specified correlation coefficients. The algorithms for these

computations are described below.

For convenience of discussion, the flow variables (i, n, , 'r) in

Equation (5-7) are redesignated by #,, i - 1, 2, 3, 4; thus the correla-

tion coefficients become #ij. The problem is to compute a random

sequence of sets of #i consistent with the specified set of values of

#i~j. Two schemes for obtaining *i are described below.

NORMAL DISTRIBUTION SCHEME

Let *i be independent random variables with zero mean and unity

standard deviation. Let P be the probability distribution function of

the flow variables 0j, and set:

4
01 Lii j (E-1)

Jul
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where &,j are constants. Noting that the Jacobian C of transformation

between *i-space and Oi-space is a constant.

4

inC~'~jk4,k%~'ik(E-2)
" c .l ik "J, *k't" " ik 'jk -)

It is convenient to choose C - 1. The quantity *i satisfy:

where . is the Kronecker delta. Letting:

- Ki + Iii, and

4ij = ij - ai j

we have,
4

# - K~j + -k (lik " aik)(jk ajk)- KJ + "J kl k

whence

a 14I ai a - K i (E-3)
ij 1-E ik jk ij

Note here that if the #'s are independent then T, K and a

as perturbation about an uncorrelated distribution. This method has

been found to converge rapidly, Equation (E-3) is the basis for an

iterative solution for the aij starting with aij - 0. Once aij are

computed, the values ajj and hence #i can be computed.
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An approach to measurement problem based on principle of least

bias has been discussed by Lees (55) and Janes (59). Follovia& the

formalism presented by Lees, we find that if only first and second

moments of the flow variables (u, v, w, e') are prescribed, e.g., u,

2 -- "uv, etc., the least biased distribution function consistent with

the given set of moments and correlation coefficients is given by

Equation (E-1) with the 's Gaussian. Gaussian distribut.on was chosen

for all basic calculations.

AN ALTERNATIVE GENERAL SCHD(E

This scheme is the same as above except for hiSher correlations and

is designed for consideration of a number of random number probability

distributions. For a given set of correlation coefficients 0 1

the following set of relations are first written:

#1 #2 M, a

02# b2 I b

#4 , I 2 " *2(E-4)

#1 04 = c 1 + c+2 2 +c3

- + 2 3

'$304 ' cl'0351 + c253'0 + c3
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where a, blo b2 , C1, c2 , c3 are constants to be solved in terms of

The computatica vill proceed if these constants satisfy the

followift requirements:

'aI~i

1611+ 2j S 1 (1-5)

jell + c2l + jc4l :9

Otherwise, the set vwll be called inconsistent and the computation

is terminated.

Take four independent random numbers #j, i - 1, 1, 3, 4 from a set

of specified probability density (e.&, Gaussian distribution) and four

more independent random numbers Ri., £ - 1, 2, 3, 4 from a sec which is

uniformly distributed on the interval (0, 1) and define G(R, c) such

that:

G(R, c) - for R: c
(E-6)

- 0 forl>c

The flow variables a, are then calculated as follows:

01"e

#2 - Sign(")G(R1, IaI )#, + G(R1, 1- jai ) 02

3 -Sign(b)G(R2, Iblj)i1 + Sign(b2 )G(R2, 1b2 1), 2  (E-7)

+ G(R 2, 1- 1bj- NIj).3



157

*4 - Sign(c1)G(R3ilcjl)#, + Sign(c2)G(R3 +[c21)*2 + Sign(c3)G(R3'

ic31).3 + G(R3' 1"-Ici c2 1Ic31)*4  (E-7)

GINERATION OF THE #i

The random variatles *, used above are generated from two basic

sets: a normally distributed set with mean zero standard deviation unity

and a uniformly distributed set Ri on the interval (0, 1). The former

was used for obtaining the normally distributed *i and the latter was

used for obtaining the normally distributed Ri and three other types of

distribution of I"

# - 2 T(R - 0.5) (E-8)

#- +1 for R k0.5

(E-9)
-. for R< 0.5

(,) / 7 (R-2/3 0.79 (E-10)

Equations (E-8) and (E-9) describe a uniform distribution of 0 in the

range - V' _< #*<V and an equal distribution of # -* 1, respectively.

Equation (E-10) is derived from Cauchy distribution,

2 2-2
f(#) = 2(1+ 2)

Let ,R far f( de

g .f(,') dV
-@0
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whence

9C (R - 1/2) ~$+ tan-1  I tanl14<

Expand the above equation for *#N>0 and rearranges

E ( -R) j -5;

Solving this equation for #, Equation (E-10) is obtained. 
Equation

(E-10) is used for the tail wd values of R (i.e., for R >> 0). A

rejection scheme based on Equation (E-10) is described in the following

block diagram:
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COMPUTER PROGRAM

This program is written in FORTRAN IV computer language. Three

permutation schemes have been used in the main program for the purpose

of parametric studies. Since there is no difficulty in programming these

schemes, only one of them is included here.

Input Data

1. AW, BW, CC, CN, AL, GAM correspond to A, B, k2, 0.5, 6, V, in

Equation (5-10).

PHIV, THEV, VM correspond to #v, Ov, Vm in the sketch on p. 45

ID - display index: -2 means complete display; -1 means standard

display.

NO - a number to initialize random numbers.

2. SUTI(I), SVTI(I), SWTI(I) correspond to a matrix of values of qu

ev' owl

3. CKUV, CKVW, CKWU, CKUT, CKVT, CKWT correspond to the six correlation

coefficients in Equation (5-9).

STT =e

DPHIW - ,#w (interval of #w, wire orientation)

Output Data

1. UBX, VBX, WBX, TBX are, respectively, the simulated average values

of u, V, W, *'

2. SUTX, SVTX, SWTX, STTX are, respectively, the simulated values of

o%, c, qw, .
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3. CKUVX, CKVwx, CKWUX, CKuTX, CKVTX, CKWTX are, respectively, the

simulated values of Kuv , K Kw wu, KuS, Kv#, Kw#.

4. Ei., LOB, LIB, L2B are, respe tively, the simulated values of E,

W ,/2 -w , W 2. SE, SLO, SLi, SL2 are, respectively, the standard

deviation of the simulated values of E, W1/2, W, W2 .

5. RLO, RL1, RL2 are, respectively, the values of W14, W, T divided

by their corresponding values for w= 00.

6. ROl = (W-/2)2/", R02 =(W-/2)4 /72 , R12 =2/2.
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HOT WIRE SIMULATION PROGRAM -PARAMETER VARIATION SChEME NUMBER IA

SYSTEMATIC VARIATION OF SINGLE VAPIABLE DISTRIRUTION FUNCTIONS
EzS0RTC().0ALTT)*AW+(1.0,GAM*AL*TT*AW*(SORT(UPP2CC*LPL2)I*CN)
REAL L0BsL1RPL2AsLORtL1RL2R
LOGICAL FLAG
DIMENSICI. C(4,41 ,8(4,4,4).SCC4),5R(4,4),CK(494),SUTI (100),SVTI (100

1jSWT! I()~),S(iMF(20).UTT(5OO0'),VTT(50O0lWTT(SOf)9TTT(5OflO)9ZE4I9

COMMON A'JoBW PAL 9CC ,CN,9PHIV* THEV9PH I w 9 THEwvVMqSUT tSVT 9SWT STT9CKUV 9
ICiKVW9CKWl ,CKI)TC.KVTCrKWTNu4AX, iCO.CI(,RSBCt,SCFLAGEBSELORSL
23,Ll8,SL'AL?9,L?,flPHIwZ.RsSU)MEiiTTVTT#WTT9TTT,6AM
READ 5.1 )AW(iWCCCNALGAMPrIVTHEVVMIDNO

1 FORMAT(2F8.4,4F7.4,2F8.3,F8.4/12, 16I
WRI TE'6,?lA~,RWCCCN.ALGAMPHIVTHEVVM,1DN0

2 FORMAT(113HlHOT WIRF SIMULATION PROGRAM - PARAMETER VARIATION SCHF

IME 'AA- VARIATION OF DIST* FCN* INnEX IC AND NOs TRIALS N /67H4 EsS
20RT((I1OALTT)AW+(*OGAMAL*TT*Bw*(SORT(kJPP2CC*UPL2))*CN)/4H
30Av~F7.492X3HHWF7.492X3 :CF7.4,PX3HCNiF7.4,2X3MA~3F7.4,2XL.HGAMUF
47.4,?x5HPHIV=FR.3,?X5I:THEVzF8. 3.2X3HVMaF7.4/.H lDuI292X3HN0sl6)
RNuRNU(NO)
R~mQNN( Nnl

3 1*1+1
READ( 5.4 SUT H U .SVTI(I) .SWTI( II

4 FORMAT(6iFI0.5)
IF(SUTI(I)*GE.O.OIGO TO 3
ISSI-I

5 READ(594)CKUVCICVWCI(WUCKUTCI(VT.CKWTSTTDPHIW
IF(CI(UV*LT*CI.0)GO TO 10
WRITE (696)CKUVCKVWCKWU.CKUTCKVY.CKWTSTTDPMIW

6 FORMAT(6MrCKUVF743X5HCKVW:F7.4,3X5HCKWUaF7.4.3X5HCKUTuF7.4,3X5H
ICK VT=F7 .4 *3XSHCK WT:F7 .4 93X4HSTTOF 7.33X6HDPH IWuF8.3)

DO 9 IX1,IS
SUTzSLJTli f)
VTsSVTI(II
SWT-SWTI (I)
WRI TF(6,7)SUTtSVToSWT

7 FORMAT(5HOSUT=F9.5.SX4HSVTRF9.5,5x4HSWTxF9.5)
DO 9 J1,*4
1CmJ-I
D0 9 Kal1
IF(K*EO.] )NMAXa100
IFI K. FO.L)9NMAXz 400
IF (K.EOo )NMAXu 1000
WRI TEC6.9l ICoNMAX

8 FfRMAT(4H01CzT?,5X5HNMAX2I4)
CALL AWIPF
IF(.NOT*FLAG)6O TO 5

9 CONTINUE
Gm~ TO 5

10 STOP
E.ND
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SURROUTINF XWIRF
REAL LOB.L18sL28*LOR9LIRvL2R
LOGICAL FLAG

llSWTI( 1(0) *SLME (2C).UTT (5000 * VTT(5000) 1WTTISOOC) T1T(5000),Z (4)s
7R (3)
COMMO0N M.BW.ALCC .CN.PMIVTHEVPHIWTHEWVM.SU)T ,VTSWT .STTCKUiVs
ICKVWCKWUCKUTCKVTCCWTNMAX.tC,1DCKFISBCSCFLAC,EE.,SEL0RSL
20,L1BSLIL2BSL2.DPHIWZRSUMEIJTT#VTTWTT.TTTGAM

THEwv0.0
PHIWU-DPHIW

1 P*41WOPIIW+fOPHIW
IF(0HIW*GTo18n*()C0 TO 2
IF (PHI4W.GT.90.f)AND.CKUV.EQ.OoC.ANiD.CKVW.EQ.O.0.AND.CKVT.EQor'.0.AN
ID.CKWT.EGOOOAN4o.CIWUeEQOOU)GO TO 2
CALL WTQFeP
TF(oNOT*FLAG)An TO 3
GO TO 1

2 IF(CKUVdQ.)CKWUAND.CKVT.E~oCKWT)GO TO 3
THEW*90.t
PHIW00*0
CALL WIRLSP

3 RFTURN
END
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suRQni)TIW bIQP
RFAL L0BL1R9L?89LOR9LIRL2R
LOGICAL FLAG
DIMENSION C(4.4I 8(4,4,4)hSC(4),S9(494) .CK(','.).SuT1I 0C ),SVTI( 1OO
1).SWTI(iOO),SUME(2O)eUTT(5000),VTT(5O0IlWTTI'SOO0).TTTg5000).Z(43,
2R(3,9ALF4v4)9SuMA'.,4)
COMMON AWBWALCCCN*PHIV,'HEVP,I4,THEW,' M.SUT.SVT.SWT.STT.CKUV.
1CCV.~CKWU.CIUTCKVTCKEWTNMAXICOsCK*fStSC*CFLAGE8,SE.LORSL
20tLIS.SLlt L289SL29DPHIWtZtRSUMEt'jTT ,VTTWTT*TTToALFtSUA*GAM
IF(NMAX*LToO)GO TO 10
FLACGn.TRUF.

CK(C291) uC'VW
CK(11)sCKWIJ
CK (1.4) uCKUT
CK(294)a(KVT

D0 1 Ju3#4
DMf 1 Jul.'.
IF(IlEQ..I)CicjIJ)z1.0
IFCI.,T.l,)CK(19J)uCKCJ.I)

1 IF(ABS(C,( I J) ) GT@l.O)FLAGs.FALSr-.
I) 4 Ko1.4
SC C(1 =C *(
00 3 Iz1.4

SBC I*K~)-.0
D!) ? Ju1.4
SC I .JI)uO.C
IFCI.CO.J.OP.J.FO.K.nR.K.FO.I)GO TO?2

C(soKxC~ili,)-CKi J'g().C~ZK .1) C/) 1O-CK( J.K)*

IF(A)3SCCHI9tJ.K))+AI4S(RCI.(JH.GT.1.o()FLAGU.FALSF.
L .10-I -J-K

2 CONT:NUF
3 SC (K~ C C K) 4A8S (I.K)

IF) SC (Co.GT.1.l) FL4G. uFALSE*
4 rnNTTINi)F

IFCID.GT.-2.OR.FLAGCGO TO 6

1 .CCI J .JE 1.'.) *131,4 .SC CIC * 1 .4)
5 FORMATC1MOQl'F2.4,'5X94F12o4C,
6 liPFLAG160f TO A

WRI TEC6,7i
7 FOmT3HCORLTO OATA INCONSI1STENT -EXIT)

P'rTuQN
a IF(IC.GF*Are, TO 80

DO 81 1-1#4
~O81 J-l.'

81 ALFCT.j)-0.O
D0 83 N-)92U
1)0 82 lw~o4

n~o A? J.-!0.
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SUMAC I .)80.0

62 SU#AE1,j)xSUMAI1,oj)+ALF(,tK)*ALF(c
DO 83 181.4
0O 83 Jul.'
ALF(!,j):O*(ICKEIJ)+SUMA(

19J))

IFCI.EQ.UCJ)ALFIIJ)3ALFCIJ)+0.
5

8s CONTNU
IF( !D.EO.-2)WRITE(6.84) C(ALF(I IJ) .Jx1.4) .. 1,4)

64 FORMAT(9HOALF(IoJ)/1H ,16F8o5)
6M TM 10

80 AuCK(192)
81*CKI293)

IF(CK(1,2)**2.LT.I.OIB2UB(3*
2 91)

CluCK (1 .4)
C2=.0.0
C3',). 0

IF(CKCI2)*CK(23)CK(31)NElO)CZxC(2
4 )

IFICK(192)*CK(23*CK(391)NE.10
0 C3 C13o4

IF( ID.EQ.-2.ANO.:NMAX.GT.0)WR1TFC699)A.Bl'g?.Cl ,C2,C3

9 FORN'AT( 3H AzF7. 93X3HR1 .F7.4 ,3X3H4P2F7433HC2uF74,3x3HC2F
7 4o3

IX3HC'3-F7.4)
10 pBpPHyW/57.?958

BETAxPHIV/57.0Q58
ALAu (THE\ -THFW) /5792958
EluSIN( BB-BETA)I COS(M )*SIN (BETA) .( 1O-COS( ALA) I

E2%SINCALA[*CS(PR~I
EUCOS(BBETAV.COS(BBI*COS(BETA)* 1.0-COSCALAI)
N80
DO 11 1.1.6

11 SUP4ECI)*u.O
IF(PICWe.IFOOOPTHFW.NE.04

0)GO TO 14.
DO 12 109,20

12 SUMF(!)zO.O
IF(MMAX.LT.onno TM 14
IF( ID*EO#-2 1WPITE(69131

13 FORMAT( lHO,5X2HUT9lOX2HVT,1OX2HWT,1OX2HTT,1OX2b4E1,1UX2HE2*lOX2HE
3 o

19X4HUPP2 ,8X4H(JPL2,9XlHF)
14 MA ?n INx1,1OA

N=N+l
IF(NMAX.LT*0)GO TO 17
DO 16 IwI94
IF(TC*LE*0)Z(1)ZRNNiO)
IF(IC.6T.O)Z(I)xRNU(O)
IF(IC.EO#-1IG) TO 16
IFC 1.LE.3)R(lavRNUCO)
IF( IC.EOol IZ(1)233.4641*(Z( I -0.5)
IF( IC.EO.2)Z( I)sSIGN(1.0.(Z( I )-OS))
IF(ICNE.3)GO TO 16
ZAoAMTNI CZ (1)9*(1 .0-Z C I

IF(ZALTfl2O27)ZS(ISGN(CSQRT(773ZA**(ZO/30)O?@
9I)C(Z

1(1-0.5))
IF(ZA*LT*O.020?7)GO TO 16
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15 RZ=RNU(0)
Z( 1)w4.0*(RZ-0.5)
RZ*RNU(O)
IF(RZ*GT.(1.0+Z( l)*02v**(-2))GO To 15

16 CONTINUF
IF(IC*GE*O)GO TO 160

VT3(1.OpLF(292)l*Z(2)-ALp'(2,3)*Z(3)-ALF(294)eZ(4)-ALF(21)*Z1)
WTU(1.O-ALF(393))*Z(3)-ALF(394)*Z(4)-ALF(3,1)*Z(1)-ALF(3.2)*Z(2I
TTx(1.0-ALF(4,4))*Z(4)-ALF(491)*Z(1)-ALF(492)*Z(2)-ALF(493)*Zg)
GO TO 161

160 UTvZ(1)

VT*Z(2)I
YF(q(1).LF.ARS(AUIVTaUT*StGiN(1.0,A)
WTxZ (3)
TF(R(2).LF.ARS(BI))WT:UT*SIGN(1.0,B1)
IF(R(2).LE.A8S(B1)*ABS(R2).AND.R(P'.GT.ABS(Bl))WTuVT*SIGN(1.OB2)
TTuZ(4)
IF(FR(3i.LF.A8ScCfl)TTaU(T*SIGNc1.OCl)
IF(R(3).LE.ABS(C1)+ARS(CP).AND.R(3).GT.A85(C1U)TTuVTSGN(1.oC2)

1WT*SIGN( 1.0,C3)
161 UTT(N)uUT

VTT(N) aVT
WTT (N) uWT
TTT(N)=TT
GO TO 18

17 UT*UTT(N)
VTuVTT (N)
WTzWTT(N)
TT&TTT(N)

18 UTutJT*SUT
VT aVT*S VT
WTaWT*SWT
TT&aTT *ST T
IF(PI-IWNE.0.OOR.THEW.NE.0.0)GO TO 19
SUME(7)xSUME( ?)+UT
SUME(8)zSUME(8 )+VT
SUME(9)uSUJME(9e+WT
SUME( IO)m-SUME( 10)+TT
SUMF( 11) tSUMF( 11 )+tJT*VT
SUME( 12)cSUMEc12)+VT*WT
SUME (13) uSUME (13) +WT*UT
SUMEC 14)2SUmE( 14)+OT*TT
SUM4E( 5)hSUN1 E(15,+VT*TT
SUME(16)a.SUME(16).WT4TT
SUME( 17)LSUME( 17)+UT**2
SUME( 18laSUME(18).VT**2
SUME( 19)aSU4Et19)+WT**?
SUMF(20 =SUmE(?;O *TT**2

19 UPL2U((VP*+UT)*EI+VT*E2.WT*E3)**2
UPP2 ( VMi(UT )**?+VT**2+WT**2..UPL2
ESOws(1.O+AL*TU,'*AW+(1.04.GAM*AL*TT)*6W*(SORT(UPP2.CC*UPL2))**CN
FzO.0
IF(ESO.GT.O.O )E=S0RT(ESO)
CL&(ESO.AW) /FW
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SUMF( I uSUMFllI)+F
SUMF ( 2)w.5gjMF(? F~
SUMEC 33 SU4E( 3)*CL
SU'Pf 4) wNI M~F(4 1 CL**?
SU'4E 5)zSt3ME(S53+CL**4
SU4F (61 uSIIMF 1A)+CL **A

20 IF( ID.E~o-2.AND.NMAX.GT.O)WRITE(6.21 3UT.VTWTTTElE2,E3,UPP2,UPL
1 1.

21 FORV.AT(lH 10E17.i3
II(N.LToIAS(NMAXI) GO TO 14
FNaFLOAT (NI
NIAXz-!ARS(NmAX)

E2RcSUME (23/FN
LflRuStJMF (I3/FN
L1BuSUME(4)/FN

L?R')ImF I S 3/FN
JF(PHIW.N4F.0..OR.T(4EW.NE.O.O)GO TO 24

WRXzSUME(9 3/FN
TRX=SUMF(103/FN
UV3RX=SOME(113 /FN
vwgxusumr( 123 /FN
WUBXaSUME(13)/FN
UTRXsSIJME (14) /FN
VTBX*SUME( 153/FN
WTBXuSUME( 16)/FN
U28X*SUME( 173 /FN
V7AXxSUMF I I~ 3/FN
W2BXaSUME( 1Q3/FN
T2BXuSUIE( 203 /FN

!F(U2FBX.(ToUFX*2)SUTXuSORT (U2BX-IIBX*023
S VT Xu-1. 0
IF(VBXsGT.VBX**2 3SVTXuSQRT (V2BX-VBX**2 3

IP(W28X.CT.WRX**23SWTXuSQRT(W2BX-WIBX**2)
STTXu-1.0
WF(T2RX.GT.TRX**2)STTXSRTT2iX-,SX**2)
CKUVXz IUVfBX-URX*V8X 3/ ISUTX*SVTX)
C'VWXuIVWBX-VRX)WPX 3/(SVTX*SWTX)
CKWUXs( WUBX-WBX.UBX 3/(SWTXOSUTX)
CKUTXu(UTAX-IiAX*TPX 3/(SUTX*STTX)
CI(VTX:(VTBX-VFIX*TBX 3/(SVTX*STTX)
CKWTXSIWT8X-WX*TnX3/(SWTX*STTX)
WRITE(692?3UBXVBXWRXTBX,5UTXSVTXSWTXSTTXC(UVXCKVWXCKWUX.C
I KUTX ,(KVTX .CKWTX

22 FORMATI5H )UBXsF9.4,3X4HV8XzF943X4HWBXF943X4H.TBXuF9.4,3X5HSUTX
13F8e4,3X5HSVTX:FB.4.3XSHSWTXzF8.4,3XSNSTTXXFSe4/7H CKUVXnF7o4*3X6H
2CKVWXzF7 ,43X6H'CIWUXF743X6HCKUTXF74,3X6HCgKVTXxF7.4,gX6HCKWTXu
3F7*4 3
IF(PHIW.IF.O.0.0R.THEW.NE.O.O)GO TO 24
WRITE(6,9?3)

23 FORMATC1M0.3X4HPHIW.3X4HTHFW,7X2HFii,5X2HSE,6X3HLOR,4XHSLO.6X3HLIB
1 .4X3HSL1 ,6X3HL?B,4X3HSL2,1X7HLOB/LQR,1X7H1LILR,1IX7HL2B/L2R,5X3Hq
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L2ROL29
24 SEu-T.0

IF(E28.GT.Efg**2)SEzSQRT( (E29-E5**?I /Ft4)/ASS(ESI
SL0O-1.0
IFLBG*O*2S~SR(LBLR*)F)A~LB
SL1m-1.0
JF(L2I9GT.LlR**2)SL1uSQRT( (L28-L19A*#2)/FN)/ABSfLIR)
SL2-1 .0
IF(SUME(6)/FN.CT.L?8**2)SL2uSQRT( fSUME(6)/FN-L2*2)/FN)/ABS(L2B1
RLORLOB/LOR
RLluLIB/LIR
RL2uL28/L2R
ROI=L0R**2/Llr4
R02xLO8**4/L28
Rl2aLlB**P'/L29
WmRITE(625PHWTIEWE5SELBSLOL1BSLlL2B.SL2,PLL0,RL1,RL2*ROI
19,R029RI2

25 FORMAT(1H 92F7o2,4(F9*49F7o4),6F8,4)
RFTURN
END



Appendix F

NUMERICAL CALCULATION PROCEDURE AND COMPUTING TIME

The overall numerical calculation procedure is outlined in the

following block diagram with a step by step description:

Start

1. Read basic input data 10. Calculate S' for all
and instructions interior points

12. Decision making 11. Calculate or specify

Z' and S, on all
boundary points where

3. Initialize calculations cessa

4. Calculate repeated Calculate u', v
constants

5. Calculate At from values of u and v
stability criterion

ys14. Converged?
6. Execution time limit yes

exceeded?

I7. Calculate and then T'
for all inerior points

8. Calculate or specify T,
on all boundary points
where necessary j

9. Calculate Z and then Z
for all in trior points
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The details of the above block diagram are described below:

1. The basic input data consist of the grid system, source size,

GrT, Pr, convergence criteria, instructions for decision making, etc.

A list with explanations for these input data is given in Appendix G.

2. Several decisions are made in this step:

(a) For a starting calculation:, Go directly to step 3.

(b) For continuation of calculations: Read input data cards

from intermediate results of previous calculaLions.

(c) For subdividing mesh spacing: Read input data cards from

results of the converged solution of the previous calcula-

tions; and set the approximate values at the added mesh

points equal to the arithematic average of the known values

of the neighboring points.

3. At t = 0, set all dependent variables equal to zero except

Ti,l = 1 for x S D/2.

4. Calculate all the repeated constants in the computer program.

5. Calculate At from the stability criterion (Equation 6-10).

6. If the execution time limit is exceeded, go to step 15 for card

output. This card output will be used for future continuation

of calculations as described in step (2b).

7. Calculate from Equation (6-11) for all (i,j) interior7. Clculte i,j

to the boundaries (hereafter these points will be referred to as the

interior points as opposed to the boundary points) and then calculate

V' jfor all interior points as follows:

0~
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T'ij = T ij + A

where T' i represents the temperature at an advanced time.*

8. Calculate or specify T'i~ for all boundary points using he

applicable boundary conditions. ,.rev~os

9. Calculate () using Equation (6-12) and the T'ij just

obtained and then Z' ,9 for all interior points.

10. Calculate S'i'j using Equation (6-13) for all interior points.

A Gauss-Seidel point iterative procedure is used. The scanning is

performed column by column (i.e., from j = 2 to jmax-l for i - 2 to

imax-l). In the calculations the freshly calculated values of Si j are

always used. The over-relaxation factor W is calculated from the

following formula (51, Section 7.17):

W + , where A= B + cos

The iteration is terminated as soon as the convergence criterion:

n+l n
Si'j - Si'j S EPS for every (ij)

n
Si,j

is satisfied. Here, the superscript n means the n-th iteration and the

value of EPS used for all calculations was 0.001.

11. Calculate Z'ij and S' i~ for all boundary points using the

applicable boundary conditions discussed in Chapter VI.

Hereafter all primed quantities refer to those at an advanced
time.
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12. Calculate u'i,j and v'i' j for all interior points using

Equation (6-14) a the stream function just calculated.

13. Determine the maximum values of u' and v' and label them as

umax and vmax, respectively.

14. Return to step 5 and repeat the complete cycle. The complete

calculation procedure is terminated when the following convergence

criterion is met: Z i iZ'ij " Zi' l0 "4  for all (i,j).

Numerical results show that when this criterion is met, the maximum

error calculated in step 10 is usually smaller than 10-5 , and all the

other dependent variables (u,v,T,S,Z) show no appreciable changes.

15. The output consists of: partial printout for intermediate

results during the calculation, card output when either the solution is

converged or the execution time limit is exceeded, and complete printout

for the numerical results of all the dependent variables.

The computing time depends on the combination of the array size and

the source size. For the cases studied, the computer execution time

required for obtaining a converged solution increases with Gr and the

source size. A summary of the execution time for the cases run are

given below:
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No. Grid System* imein. Remarks

GrT 1 i04

1 13x15,1-4 3

2 17x25,1-7 11 Continued from solution of

No. 1.

3 17x13,1-5 6

4 17x17,1-5 8

5 17x21,1-5 10

6 17x25,1-5 12

7 15x17,1,5 5

8 29x33,1-9 32 Continued from solution of
No. 7.

GrT  105

9 15x17,1-5 8 Initialized with solution of
No. 7.

10 17x33,1-9 14 Continued from solution
No. 9.

11 21x33,1-17 17 Continued from solution of
No. 10.

, See p. for explanation.



Appendix G

COMPUTER PROGRAM LISTING - FLOW FIELD CALCULATION

This computer program was written in FORTRAN IV computer language.

Five primary variables (the dimensionless indraft U, updraft V, tempera-

ture T, stream function S, and vorticity function Z) are computed for an

array of mesh points of IMAX x JMAX. There are four major parts in this

computer program: reading input data, calculating all the repeated

constants, main body of the calculations, and output.

The input listing is described below:

IMAX, JMAX maximum values of I and J

Il, 3l IMAX - 1, JMAX - 1

12, J2 IMAX - 2, JMAX - 2

K a register of the time steps advanced

LL total number of iterations performed up to the K-th time

step

M size of source radius, D/2 = (M - 1) Ax

Mm = M + I

N frequency of intermediate printout, i.e., one printout

after every other N time steps

IM number of columns per line in the printout

KM maximum allowable number of time steps to be advanced, a

limit to the computer time that may be used
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LM maximum allowable number of iterations for solving the

stream function

II, jj array size of the card output for the presently converged

solution (This array will be used as the input for finer

mesh spacing continued calculations.)

GR Grashof number

PR Prandtl number

EPS convergence criterion in the iteration procedure for

solving the stream function, usually set at 0.001

TIM = 0.0, for initiating the dimensionless time

TI a factor for adjusting the size of the time katanva1 to,,be

advanced, usually set at 1.0

XY the ratio 4y/Ax, 1.0 was used for the present calculations

UMAX, UMAX the maximum absolute value of the component velocities u

and v

CARDS 0 0.0 means card output is desired

READS # 0.0 means card output of previous calculations is to be

read in addition to the regular input of two cards

W over-relaxation parameter

TEXC maximum allowable time for execution, a time control device

DIVIDE $ 0.0 mean the data input from previous calculations is to

be interpolated to obtain the values at the new additional

points for a gubdivided mesh spac:ing system
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SKIP skipping instruction for boundary value specifications:

SKIP >0.0 means skipping S(IMAX, J), T(IMAX, J); SKIP

2.0 means skipping T(IMAX, J), S(IMAX, J), Z(IMAX, J),

T(I, JMAX)

CO convergence criterion (usually set at 0.0001), if met the

complete calculation is terminated and the complete results

are printed out
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DIMENSION U(4394.3)9 V(43t431, T(4394319 Z143943)9 S(4394319 flTnT(4
13943)9 DZDT('.3,43,,CA(43) ,CBIA3),CC(43),CD)(43).CE(43).CE'.3),CG(43)
1) ,CH( 43 ) CI 143) ,CJ( 43

201 FORMAT (/5Xv 26HSTREAM FUNCTIONS -- S(I.j))
202 FORMAT (/5Xo 25HlRADIAL VELOCITY -UUJo))

203 FORMAT (//SX. 27HVERTICAL VELOCITY -- V(IqJ))
204 FORMAT (//5X* 21HTEMPFRATURF -- T(TJ))
205 FORMAT (//SX, IQHVORTICYTY -- 7tjiJ
206 FORMAT (19411
207 FORMAT (4X,94HK 9 14*4X94HL a *3,SX,7TIME - 9F12*S95X95HDT a

2E10.39SXt5HDX s F6*3,59,5HDY 2 ,F6e3o5X96HFPS a 9F6*3#5X,
35HTI z PF6*3)

208 FORMAT (lHlo//784 NUMERICAL SOLUTION OF NATURAL CONVECTION NEAR A
2 CIRCULAR BOUNDARY HEAT SOURCE94X94HGR so FIO.3,3Xo4HPR as F4*19
33X,7HGRID a 912*1HXoT2l

210 FORMAT (33XIPqF1,3)
211 FORMAT (/)
212 FORMAT 11615/E10.3914FS.2)
213 FORMAT (6H4 K x ,I",4X,494L a v13o4Xo6HTIME *,E11.4,AXt4HDT moElI.4

2v4X97HOMAX a ,E11.4*4Xv7HCONV a 9E11.4.4Xo5HLL a *181
Z16 FORMAT I1PIOE13*41
217 FORMAT (13Xq1P7F13o4)
21Q FORMAT (1PBF!O.3)

221 FORMAT (3Xo1P7Elle4)
222 FORMAT 42110, 1P4E1S.7)

C READ DATA INPUT - FOR CALCULATIONS AND CONTROLS
101 READ (5#2121 IMAXJMAXI1,J1,1l2,J2.KLLM.MM.NiMKM, LMIIJJ

?,(GR9PREPSTIM *TI ,XYUMAXVMAXCARDSREADSW.TFXCDIVDF,SKIPCO
TCHK1 a TIME(1*0)
WRITE (69212)IMAX.JMA>',I1,J1 I?,J?,KLLtMMMNIMKM, LMI1,JJ
29GR9PREPSTIM ,TI ,XYUMAXVMAXCAROSRFADSWTFXCDIVIDFS(IPCO

CALCULATE REPEATED CONSTANT TERMS IN MAIN CALCULATIONS
XM a -
XN - N
DX - 0.5/XM
DY aXY*DX
DX2 - DX*DX
DY2 = OY*DY
C = .O/SORT(GRI
Cl - c/pR
C2 a 2.0'd1.0,DXZ+1.O/DY?)
I) a 0.(*DX2/(1.OD)X2/Dy2)
DTI C1*C2
DXY2 ?,0'DX2*DY2
(11.11

Cl 2=1

I DO 2 1*2,IMAX
CII * 1-1
COEFF w 2.0*CII.DX
Al x n.5/C71
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CA I I m l.O(+ATI/DX?
Cg(I) a (1.O-AT)/flX?
CC(I) a (1.O+F)I)/0X2
CO(1) (1.O-B1IDX2
CEM x (I*DX)**2
C~tl) x COEFE*OX
CC;I ) w COEFF*DY
CH(fl a CII**2*DXY2
CIM x At/fOX*DY)

2 CJM = AI/DX2
IF (READS.NE*0O, GO TO 107

C INITIAL CONDITIONS
5 DO 6 1 a191MAX

DO 6 J sIJMAX
U( 10J) a 00
'/(19j) x %()
T(I.Ji z O*0

Z( 19j) w r).0(
6 S(f19J) a0.0
3 00 4 Is1#M SIZE
4 T(191) z 1.0

GO TO 82
CARD RFADIN6 FOR CONTINUATION

107 READ (S9222) KK*LLoTIMoUMAXVMAXCR
IF (DIV7DF.'O0n0) GO TO 106

C INPUT DATA RFAnINA W1- SU8O)YVITON OF MESH SPArIN(* IS D)FSYRED
READ (592211 IIU(T,4) ,VU,4,T(TJ),S(1,J),Z(IJ), I.1,IMAX*2)9

2 JwloJMAXo2)
10 DO 2n Jl*JMAX#?

DO 20 12IMAX#?
UC 1.4) m fMJI-1,J)4tJ( I+1J) 1/2.0
VfI.j) z(V(I-1.j)+V(I.1,4fl/2.tl
T(I .J ) - I - I 4-)T I !T1 *J)1/?.'

2,^ Z(1.4w * Z(I-1.J,.Z(I!4l,4f/?*O
?I r) 77 u %w t

DO 22 I&I1MAX
U(IIJ) x (U(I,4.1)+U(IIJ-1fl/2.0

TII,.J) x (T(T,4+1)+TITqJ-1)l/2fl

2? ?tI.J) f7I(I,4+fl+7IYJ-j)l/?*n
T(MM*1, 0.0
IF (SKIP NF.0) GO TO 88
PEAD (59219) (T(IMAXtJ)o J=2916%2)

READ (5921Qi (TU,*JMAX), I=7,IMAX*2)

RFAr) ('4,?10) (StI.MAX,, I=?9IMAX*2)

READ 16010Q) (Z(IJMAXs 1=29TMAX921
Go~ Te' AS

106 READ (59221) C'''',#J?,VIIJiT(IJ),S(1,J),.ZIIJ). I=19IMAX)o
e Ju1 * 'AX)

88 K =K-
r~n Tn 1n?
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r

r MAIN rALCUI AT IONSr
C TIME TO BF ADVANCED BASED ON STABILITY CRITERION

82 DT x TI,(UMAX/DXVMAX/DY+O)TYI
TIM a TIM+DT

80 T(HK2 a TI'4E(IS')
C FXFClJTI0N TIMP CONTROL

IF (TCHK?-TCHK~1.CT.TFXCI 60 TO IOMl
K =K.I
IF (K*CT*KM,) 00 TO Inn

f FNFkC.Y EIDUATION
9 DO 10 1.2,11

no In Ju?.J1
IF (U(IJ)) 51958.52

51 TI a U(I.J*(T(IelJ) - TU,9Jfl/DX
G6f% TO 53

58 TI z Men
A0o TO 53

52 TI a Uli#Jl*(T(1,J) - T(T-lJ)/tOX
53 IF (V(IJn) 541.59#55
547T2.a VUoJl*(TtUJ. - T(I*,)J/DY

r. ) TO 56
S9 72 a 0.0

S 0 TO 56
AS TP z VCI*Jl*tT(T*Jl - Tf1,J-lfl/MY
56 IF (IcFt0.1l 60 TO 41

73 a CA(I)*T(I,1,J1,CB( 11*71I-1,J)-C2*T(IJ,.(T(I.J.1)+T(IJ-1I)/
1 0Y2
A0 TO 10

91 73 a 4.0*(T(2,J)-Tl1,J) l/DX2+l7(1.J+1l-2.O*T(1,J)+T(1,J-I1 I/0Y2
I0 fTDT(IJl a -Tl-TZ.CI*T3
11 D0 12 1-2911

riml 12 j 79~JI
12 T(IsJI T(IJ) 4 DT*DTDT(IJ)
27 DO ?8 IMMMII
28 T(1911 (18.0*T(192)-9.0*T(I,3),2.6j*T(1,4)l/I11. NO FLUX

C 5V IPx2*19 VALUES ON BOTH IMA)X AND JMAX ARE FIXF~o SKIPu1.~t FIXFD ON JIAX ON
IF (SKIP. .o2.0) 00 TO 413

17 D0 18 Ix 2911
18 T(IJMAX) =T(I*JI)
43 no 44 J:29JI

TIJ a (1R.O*T(2.J1-9fl4T( 3,J).2@*T(4,J11/1 1.0
IF .oNOT.(TIJ.GiT.IO.0AND.T1J.LT.1.on, GO T0 45
Ir (TIJ,LTT(2,J)) GO 70 45
T(19J) a TIJ
0070O44

45 T(1,.)) a T(29J)
44 CONTINIIF

r VORTICITY FOUATION
O)7MAX a 0e0

13 DO 14 1.2o11
DO 14 J*2*Jl
IF (U(IJfl 61968962

61 ZI = U(I,.J)*(Z(I.1,J) - Z(19Jfl/PX
G0 T0 63
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ZI u(-J)(7(PJ)- Z(1-1,j))Inx
63 IF (V(I,JH) 64.60,65

6;O TO 66
60 72 x o

60 70) 66

66 IF ty.rQ.1) riO TO Q2

I DY?
Z4 =(T(I.Ij) - T(1-1,J)l*Cjcjl
ri0 TO Qj

07 73j =.*72J~(

01 0?0DT ( . I -ZI-Z +r*Z 3+74
?PRP=AP S nZrT ( 1 J11 Z ( Ij )

14 IF CAFRROR.GT.DZ'AX) DZt4AX-ZFPROR
15 DO 16 1 = ,11

DO 16 1j 29AI
16 Z( [oil Z(ItJ) + rT*OZDTUjj
46 r) 47 J=29J]

7J2 (19)Z2J 
Iv*(9)+**(9)/lI .0 3-PT47 7(7,Jj =

77 L = L + 1
IF (L.riT.Lm) Mio TO 15]RMAX = 0.0

r SOLVT~, rOQ? STRrAVIFLNCT7ON BY SU(-F.SSVF OVFR-kPLAXAT TONS7 'A I 24 1 y

nfl ?4 ~J x ?o ?

DSO +C~e)s(J W)S(,l
IF (A~r((1Jsj LTqeF.I5) riO TO 24
0 m :~~cO/(~)
IF (O.,T.RK'AX) RMAX v C)

24 S(Uoj) = DSNoQ
00i = ARScRMAX].,orT
IF (f.rTOFPq r,0) To 77

ISI OMAX = MO
LL --LL.L-
IF (SKP.riT.0.0) riO To, 31

29 D0 10 j .2j
3r SiJMAX,J) z S(IJ,j)
31 DO 3? 1 2 ,IMAX

IF (SKIP.rO.20) CC TO 32
r, * )MA)( - 1f,3 (
7(1 JNMAXf :7(~

r S0 !N. Foo VF I Or! T IS
33 070 14 ]* = ?.11

nnl 14 3 = ?,il
Uf I,J) ft Cl IM * fI.. -fI3]
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105 WRITE (6,213) K# Lo TIM , OT# OMAX, DZMAX, LL
IF (K*LT*3n) GO TO 35
IF (DZMAX&LT.CO) GO TO 100

35 DO 36 J a 2.JI
VIJ z (18.M*V12,J)-q.nl*v(39J),M*V(4,J))/11.0 3-PT

36 IF (Vlja6T.0.0) VfI.J) aVIJ
C PREPARATION FOR CALCULATIONS FOR THE NEXT TIME STEP

UMAX * .0
30 nO 40 Ix 79 11

D0 40 J a 2. J1
UIJ aARs(u(tlj))

40 IF (UliJGToUMAX) UMAX * UIJ
VMAX a 0.0

41 00 42 1 x19 11
M0 42 J a 2. JI
VIJ a APS(V(IJ))

42 IF (Vtj.(iT.VMAX) VMAX aVIJ
e.
C OUTPUT

112 IF (FLOAT(K)/XN*NE*FLOAT(K/N)) (GO TO 82
102 WRIT' (6,2n8) GRPR9IMAXJMAX

WQTTF (6,707) KL.TIM oDT*DXvDYoFPS#Ti
V'RTTF (6,7M7)
wQTTr (6977m) (((I(TJl, T1,I9M), Ju1,JU*X,
WRITF (6*?0I1
WRIT' (69220) ((V(I.J)o 1=1,1Mo JnlsJMAX)
WRITE (6,204,
WRITE (6,220) ((T(I.J)t I119M), J'1,JMAX)
WRITE (6,201)
WRITF (6,22M) ((S(IJ)o Im1,IM), JultiMAX)
WRITE (6,AS~)
WRITP tA,770) ((Z(I*J)o IwlTM)* J=19JMAX)

81 GO0 To A2
100 IF (IMAXoEQ.IM) GO TO 104

WRITF (6,208) (RoPR*IMAX*JMAX
WRITE (69207) KLoTIM ,DTDXDY*EPS.TI
WRITE (6,202)
IF (IMAX*AT.20) GO TO 110
WRITE (69216) ((U(IJ), 1=1910)9 JaloJMAX)
WRITE (6,211)
WRITF (6,217) ((U(I.J)t 1u11,IMAX)# Ja1,JMAX)
WRITE (6,203)
WRITE (6s216) ((V(ItJ), I1910)o JalJMAX)
WPITF (6,211)
WRITE (6,217) t((UJ)o IallIMAX), Jz1,JMAX)
WRITE (69204)
WRTT (6#216) ((T(IJ), 1=1,1M), Jal#JMAX)

WRITF (6,7171 ((T(ItJ), IJ119IMAX)s JuliJMAX)
WRITE (6,201)
WRITE (69216) (1S(IJ), Iult10)# J*IvJMAX)
WRITE (6,211)
WRITE (6,217) ((S(IJ), I.119IMAX)o Jml#JMAX)
WRITF (6,205)
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GO TO !rn4
1Vl WQ!Tr (692711 CU'JToJ1, TwI9121, JuloJNMAX1

WPITF (621

WPTTF (6.?'n9) ((V(TqJl, Twl3oTN'AX), J-1,JM4AX)

WPYTr (67n I((.('q-Jl 7.17,)AX Jl.JAAAX?

WPQT (69211)
WRITS (6@7nql USUTJlo Tu139TWAX)o J1819JM.AXI
WRITS (60A4)
WRITS (6972O UZ(TJo,!=112t, JuloJt AXI
WRITE (6,Z111

10 1 TO f(A*201 ~I~1 ~ O1
W*TTr fA77 22 KLL1" JwTMl9MAXVMAG
WO7F (67MX.L1r

WRT (622)u1,JMAXvll)q J1JMX

1^4 IF (CI"3,0Ae) G T M

1 WRIT (7o2211 ((UC tJlV( !J) .T( IJ).S( TJ).Z(T.J).!u Tl .Ju,)o

CMTO1 3
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13 ABSTRACT

The turbulent free convection of air above a 2-foot diameter, heated horizontal
plate has been studied experimentally and numerically. The mean temperature fields
and the indraft profiles for two mean plate temperatures were measured using a thermo-

couple and a constant temperature hot-wire anemometer. Also, the turbulence and mean
velocity were measured for the higher plate temperaturi using the hot-wire method. The

flow field was visualized by shadow photograph technique. From visualization and
measurements, it was found that the region of significant deviation from ambient
temperature and velocity was restricted to a region near the plate centerline (the
primary flow region). The indraft velocity was found to be relatively large near the
ground level (within approximately 1" of the ground).

The major temperature drop took place in the region very near the plate. Within
0.02" of the plate the temperature distribution in the air could be calculated based
on conduction only. This region was therefore, called the "conduction layer." At a
given mean plate temperature, the temperature gradient was found to increase with the
radius. Data obtained from heat-transfer measurements were consistent with the one-
third power correlation reported in the literature.

The turbulence in the flow field was found to consist of low frequency and high
amplitude fluctuations (on the order of 10 Hz and 1 ft/sec). Because of the limita-
tion of the hot-wire technique for large turbulence measurements, flow velocities
could not be deduced directly from hot-wire data. To remove this difficulty, a
numerical data simulation scheme has been developed in which the parameters describing

the turbulence flow (r.m.s. fluctuations and correlation coefficients) were used as

Continued
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input. By interring from the simulated data of known parameters, experimental
hot-wire data reduction was then possible. Data reduction model was validated
by numerical experiments.

The eddy diffusivity in the region away from the conduction layer was
estimated based on temperature, velocity and turbulence data using two
independent methods. The agreement was good. The spatial variations of
the eddy diffusivity in most of the primary flow region was found to be
gradual with rapid drops occurring in the region between the primary flow
and the cold ambient.

A numerical flow calculation was made. The mathematical formulation
was based on Boussinesq approximations using a constant eddy diffusivity
model. A turbulent Grashof number GrT (the governing parameter) was defined
through the definition of a characteristic plate temperaturo rise 40T, the
plate mean heat flux and the eddy diffusivity. GrT and AOTwere obtained
based on the best fit of experimental and numerical centerline temperatures.

By the specification of A6T at the plate surface, the effect of the
intense variation of eddy diffusivity in the conduction layer region could
be avoided in the numerical calculations. Numerical results based on a
constant eddy diffusivity model were obtained and compared with the experi-
mental data. Due apparently to the non-constancy of the eddy diffusivity,
the calculated temperature and velocity profiles exhibit less constriction
than the experimental data. Therefore a more general turbulent transport
model will be required to provide a good theoretical description of the
phenomena.
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